DOI QR코드

DOI QR Code

ON THE ADMISSIBILITY OF THE SPACE L0($\mathcal{A}$,X) OF VECTOR-VALUED MEASURABLE FUNCTIONS

  • Received : 2012.06.20
  • Published : 2013.11.30

Abstract

We prove the admissibility of the space $L_0(\mathcal{A},X)$ of vector-valued measurable functions determined by real-valued finitely additive set functions defined on algebras of sets.

Keywords

References

  1. A. Avallone and G. Trombetta, Measures of noncompactness in the space $L_0$ and a generalization of the Arzela-Ascoli theorem, Boll. Unione Mat. Ital (7) 5 (1991), no. 3, 573-587.
  2. R. Cauty, Un espace metrique lineaire qui n'est pas un retracte absolu, Fund. Math. 146 (1994), 85-99.
  3. N. Dunford and J. T. Schwartz, Linear Operators I. General Theory, Wiley-Interscience Pub., Inc., New York, 1964.
  4. C. F. Dunkl and K. S. Williams, A simple norm inequality, Amer. Math. Monthly 71 (1964), no. 1, 53-54. https://doi.org/10.2307/2311304
  5. L. S. Goldenstein, I. C. Gohberg, and A. S. Markus, Investigation of some properties of bounded linear operators in connection with their q-norms, Uchen. Zap. Kishinevsk. Univ. 29 (1957), 29-36.
  6. J. Mach, Die Zulassigkeit und gewisse Eigenshaften der Funktionenraume $L_{{\phi},k}$ und $L_{\phi}$ Ber. Ges. f. Math. u. Datenverarb. Bonn 61 (1972), 38 pp.
  7. V. Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286-296. https://doi.org/10.1007/BF01360763
  8. J. Ishii, On the admissibility of function spaces, J. Fac. Sci. Hokkaido Univ. Series I 19 (1965), 49-55.
  9. H. Jarchow, Locally Convex Spaces, Mathematical Textbooks, B. G. Teubner, Stuttgart, 1981.
  10. M. Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. Math. 73 (1951), 497-511. https://doi.org/10.2307/2372304
  11. P. Niemiec, Spaces of measurable functions, to appear in Cent. Eur. J. Math. 11 (2013), 1304-1316. https://doi.org/10.2478/s11533-013-0236-6
  12. T. Riedrich, Die Raume $L^p$(0, 1) (0 < p < 1) sind zulassig, Wiss. Z. Techn. Univ. Dresden 12 (1963), 1149-1152.
  13. T. Riedrich, Der Raum S(0, 1) ist zulassig, Wiss. Z. Techn. Univ. Dresden 13 (1964), 1-6.
  14. T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, De Gruyter Ser. Nonlinear Anal. Applications, 3, Berlin, 1996.

Cited by

  1. A note on the admissibility of modular function spaces vol.448, pp.2, 2017, https://doi.org/10.1016/j.jmaa.2016.11.047