References
-
A. Avallone and G. Trombetta, Measures of noncompactness in the space
$L_0$ and a generalization of the Arzela-Ascoli theorem, Boll. Unione Mat. Ital (7) 5 (1991), no. 3, 573-587. - R. Cauty, Un espace metrique lineaire qui n'est pas un retracte absolu, Fund. Math. 146 (1994), 85-99.
- N. Dunford and J. T. Schwartz, Linear Operators I. General Theory, Wiley-Interscience Pub., Inc., New York, 1964.
- C. F. Dunkl and K. S. Williams, A simple norm inequality, Amer. Math. Monthly 71 (1964), no. 1, 53-54. https://doi.org/10.2307/2311304
- L. S. Goldenstein, I. C. Gohberg, and A. S. Markus, Investigation of some properties of bounded linear operators in connection with their q-norms, Uchen. Zap. Kishinevsk. Univ. 29 (1957), 29-36.
-
J. Mach, Die Zulassigkeit und gewisse Eigenshaften der Funktionenraume
$L_{{\phi},k}$ und$L_{\phi}$ Ber. Ges. f. Math. u. Datenverarb. Bonn 61 (1972), 38 pp. - V. Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286-296. https://doi.org/10.1007/BF01360763
- J. Ishii, On the admissibility of function spaces, J. Fac. Sci. Hokkaido Univ. Series I 19 (1965), 49-55.
- H. Jarchow, Locally Convex Spaces, Mathematical Textbooks, B. G. Teubner, Stuttgart, 1981.
- M. Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. Math. 73 (1951), 497-511. https://doi.org/10.2307/2372304
- P. Niemiec, Spaces of measurable functions, to appear in Cent. Eur. J. Math. 11 (2013), 1304-1316. https://doi.org/10.2478/s11533-013-0236-6
-
T. Riedrich, Die Raume
$L^p$ (0, 1) (0 < p < 1) sind zulassig, Wiss. Z. Techn. Univ. Dresden 12 (1963), 1149-1152. - T. Riedrich, Der Raum S(0, 1) ist zulassig, Wiss. Z. Techn. Univ. Dresden 13 (1964), 1-6.
- T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, De Gruyter Ser. Nonlinear Anal. Applications, 3, Berlin, 1996.
Cited by
- A note on the admissibility of modular function spaces vol.448, pp.2, 2017, https://doi.org/10.1016/j.jmaa.2016.11.047