References
- D. D. Anderson and V. Camillo, Armendariz rings and gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
- D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596
- R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
- E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
- H. E. Bell, Near-rings in which each element is a power of itself, Bull. Aust. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
- G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993.
- V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. https://doi.org/10.1016/j.jpaa.2007.06.010
- P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
- K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 73 (1968), 512-514.
- K. R. Goodearl, Von Neumann Regular Rings, Pitman, London-San Francisco-Mel-bourne, 1979.
- K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.
- C. Y. Hong, Y. C. Jeon, N. K. Kim, and Y. Lee, The McCoy condition on noncommutative rings, Comm. Algebra 39 (2011), no. 5, 1809-1825. https://doi.org/10.1080/00927872.2010.480952
- S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. https://doi.org/10.1016/j.jalgebra.2006.02.032
- Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146. https://doi.org/10.4134/BKMS.2009.46.1.135
- Y. C. Jeon, H. K. Kim, N. K. Kim, T. K. Kwak, Y. Lee, and D. E. Yeo, On a generalization of the McCoy condition, J. Korean Math. Soc. 47 (2010), no. 6, 1269-1282. https://doi.org/10.4134/JKMS.2010.47.6.1269
- N. K. Kim and Y. Lee, On a ring property unifying reversible and right duo rings, J. Korean Math. Soc. (to appear). https://doi.org/10.4134/JKMS.2013.50.5.1083
- N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
- T. K. Kwak and Y. Lee, Rings over which coefficients of nilpotent polynomials are nilpotent, Internat. J. Algebra Comput. 21 (2011), no. 5, 745-762. https://doi.org/10.1142/S0218196711006431
- Z. Lei, J. Chen, and Z. Ying, A question on McCoy rings, Bull. Aust. Math. Soc. 76 (2007), no. 1, 137-141. https://doi.org/10.1017/S0004972700039526
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., 1987.
- N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. https://doi.org/10.2307/2303094
- P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. https://doi.org/10.1016/j.jalgebra.2005.10.008
- M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
- G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9