DOI QR코드

DOI QR Code

MCCOY CONDITION ON IDEALS OF COEFFICIENTS

  • Cheon, Jeoung Soo (Department of Mathematics Pusan National University) ;
  • Huh, Chan (Department of Mathematics Pusan National University) ;
  • Kwak, Tai Keun (Department of Mathematics Daejin University) ;
  • Lee, Yang (Department of Mathematics Education Pusan National University)
  • Received : 2012.04.10
  • Published : 2013.11.30

Abstract

We continue the study of McCoy condition to analyze zero-dividing polynomials for the constant annihilators in the ideals generated by the coefficients. In the process we introduce the concept of ideal-${\pi}$-McCoy rings, extending known results related to McCoy condition. It is shown that the class of ideal-${\pi}$-McCoy rings contains both strongly McCoy rings whose non-regular polynomials are nilpotent and 2-primal rings. We also investigate relations between the ideal-${\pi}$-McCoy property and other standard ring theoretic properties. Moreover we extend the class of ideal-${\pi}$-McCoy rings by examining various sorts of ordinary ring extensions.

Keywords

References

  1. D. D. Anderson and V. Camillo, Armendariz rings and gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
  2. D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596
  3. R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
  4. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  5. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Aust. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
  6. G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993.
  7. V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. https://doi.org/10.1016/j.jpaa.2007.06.010
  8. P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
  9. K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 73 (1968), 512-514.
  10. K. R. Goodearl, Von Neumann Regular Rings, Pitman, London-San Francisco-Mel-bourne, 1979.
  11. K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.
  12. C. Y. Hong, Y. C. Jeon, N. K. Kim, and Y. Lee, The McCoy condition on noncommutative rings, Comm. Algebra 39 (2011), no. 5, 1809-1825. https://doi.org/10.1080/00927872.2010.480952
  13. S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. https://doi.org/10.1016/j.jalgebra.2006.02.032
  14. Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146. https://doi.org/10.4134/BKMS.2009.46.1.135
  15. Y. C. Jeon, H. K. Kim, N. K. Kim, T. K. Kwak, Y. Lee, and D. E. Yeo, On a generalization of the McCoy condition, J. Korean Math. Soc. 47 (2010), no. 6, 1269-1282. https://doi.org/10.4134/JKMS.2010.47.6.1269
  16. N. K. Kim and Y. Lee, On a ring property unifying reversible and right duo rings, J. Korean Math. Soc. (to appear). https://doi.org/10.4134/JKMS.2013.50.5.1083
  17. N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
  18. T. K. Kwak and Y. Lee, Rings over which coefficients of nilpotent polynomials are nilpotent, Internat. J. Algebra Comput. 21 (2011), no. 5, 745-762. https://doi.org/10.1142/S0218196711006431
  19. Z. Lei, J. Chen, and Z. Ying, A question on McCoy rings, Bull. Aust. Math. Soc. 76 (2007), no. 1, 137-141. https://doi.org/10.1017/S0004972700039526
  20. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., 1987.
  21. N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. https://doi.org/10.2307/2303094
  22. P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. https://doi.org/10.1016/j.jalgebra.2005.10.008
  23. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
  24. G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9