References
- W. Blaschke, Vorlesungenuber Differential geometrie, Springer, Berlin, Heidelberg, New York, Vol. 3, 1929.
-
G. H. Li, Mobius hypersurfaces in
$S^{n+1}$ with three distinct principal curvatures, J. Geom. 80 (2004), no. 1-2, 154-165. -
T. Z. Li, Laguerre geometry of surfaces in
$\mathbb{R}^3$ , Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1525-1534. https://doi.org/10.1007/s10114-005-0642-1 -
T. Z. Li, H. Z. Li, and C. P. Wang, Classification of hypersurfaces with parallel Laguerre second fundamental form in
$\mathbb{R}^n$ , Differential Geom. Appl. 28 (2010), no. 2, 148-157. https://doi.org/10.1016/j.difgeo.2009.09.005 -
T. Z. Li and C. P. Wang, Laguerre geometry of hypersurfaces in
$\mathbb{R}^n$ , Manuscripta Math. 122 (2007), no. 1, 73-95. - E. Musso and L. Nicolodi, A variational problem for surfaces in Laguerre geometry, Trans. Amer. Math. Soc. 348 (1996), no. 11, 4321-4337. https://doi.org/10.1090/S0002-9947-96-01698-4
- E. Musso and L. Nicolodi, Laguerre geometry of surfaces with plane lines of curvature, Abh. Math. Sem. Univ. Hamburg 69 (1999), 123-138. https://doi.org/10.1007/BF02940867