DOI QR코드

DOI QR Code

LAGUERRE CHARACTERIZATIONS OF HYPERSURFACES IN ℝn

  • Shu, Shichang (School of Mathematics and Information Science Xianyang Normal University) ;
  • Li, Yanyan (School of Mathematics and Information Science Xianyang Normal University)
  • Received : 2011.05.22
  • Published : 2013.11.30

Abstract

Let x : $M{\rightarrow}\mathbb{R}^n$ be an n - 1-dimensional hypersurface in $\mathbb{R}^n$, L be the Laguerre Blaschke tensor, B be the Laguerre second fundamental form and $D=L+{\lambda}B$ be the Laguerre para-Blaschke tensor of the immersion x, where ${\lambda}$ is a constant. The aim of this article is to study Laguerre Blaschke isoparametric hypersurfaces and Laguerre para-Blaschke isoparametric hypersurfaces in $\mathbb{R}^n$ with three distinct Laguerre principal curvatures one of which is simple. We obtain some classification results of such isoparametric hypersurfaces.

Keywords

References

  1. W. Blaschke, Vorlesungenuber Differential geometrie, Springer, Berlin, Heidelberg, New York, Vol. 3, 1929.
  2. G. H. Li, Mobius hypersurfaces in $S^{n+1}$ with three distinct principal curvatures, J. Geom. 80 (2004), no. 1-2, 154-165.
  3. T. Z. Li, Laguerre geometry of surfaces in $\mathbb{R}^3$, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1525-1534. https://doi.org/10.1007/s10114-005-0642-1
  4. T. Z. Li, H. Z. Li, and C. P. Wang, Classification of hypersurfaces with parallel Laguerre second fundamental form in $\mathbb{R}^n$, Differential Geom. Appl. 28 (2010), no. 2, 148-157. https://doi.org/10.1016/j.difgeo.2009.09.005
  5. T. Z. Li and C. P. Wang, Laguerre geometry of hypersurfaces in $\mathbb{R}^n$, Manuscripta Math. 122 (2007), no. 1, 73-95.
  6. E. Musso and L. Nicolodi, A variational problem for surfaces in Laguerre geometry, Trans. Amer. Math. Soc. 348 (1996), no. 11, 4321-4337. https://doi.org/10.1090/S0002-9947-96-01698-4
  7. E. Musso and L. Nicolodi, Laguerre geometry of surfaces with plane lines of curvature, Abh. Math. Sem. Univ. Hamburg 69 (1999), 123-138. https://doi.org/10.1007/BF02940867