참고문헌
- Alamatian, J. (2012), "A new formulation for fictitious mass of the dynamic relaxation method with kinetic damping", Comput. Struct., 90-91, 42-54. https://doi.org/10.1016/j.compstruc.2011.10.010
- Bathe, K.J. (2007), "Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme", Comput. Struct, 85, 437-445. https://doi.org/10.1016/j.compstruc.2006.09.004
- Bathe, K.J. and Baig, M.M.I. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct, 83, 2513-2524. https://doi.org/10.1016/j.compstruc.2005.08.001
-
Chung, J. and Hulbert, G. (1993), "A time integration method for structural dynamics with improved numerical dissipation: the generalized
$\alpha$ -method", J. Appl. Mech., 30, 371-384. - Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, McGraw Hill, New York.
- Felippa, C.A. (1999), Nonlinear Finite Element Methods, http://www.colorado.edu /courses.d /nfemd/.
- Fung, T.C. (1997), "Third order time-step integration methods with controllable numerical dissipation", Commun. Numer. Meth. Eng., 13, 307-315. https://doi.org/10.1002/(SICI)1099-0887(199704)13:4<307::AID-CNM64>3.0.CO;2-2
- Fung, T.C. (1998), "Complex-time step newmark methods with controllable numerical dissipation", Int. J. Numer. Meth. Eng., 41, 65-93. https://doi.org/10.1002/(SICI)1097-0207(19980115)41:1<65::AID-NME270>3.0.CO;2-F
- Gobat, J.I. and Grosenbaugh, M.A. (2001), "Application of the generalized-α method to the time integration of the cable dynamics equations", Comput. Method. Appl. Mech. Eng., 190, 4817-4829. https://doi.org/10.1016/S0045-7825(00)00349-2
- Hibler, H.M., Hughes, T.J.R. and Taylor, R.L. (1977), "Improver numerical dissipation for time integration algorithm in structural dynamics", Earthq. Eng. Struct. Dyn., 5, 283-292. https://doi.org/10.1002/eqe.4290050306
- Hoff, C. and Taylor, R.L. (1990), "Higher derivative explicit one step methods for non-linear dynamic problems. Part I: Design and theory", Int. J. Numer. Meth. Eng., 29, 275-290. https://doi.org/10.1002/nme.1620290205
- Hulbert, G.M. (1994), "A unified set of single-step asymptotic annihilation algorithms for structural dynamics", Comput. Method. Appl. Mech. Eng., 113, 1-9. https://doi.org/10.1016/0045-7825(94)90208-9
- Hulbert, G. and Chung, J. (1996), "Explicit time integration algorithm for structural dynamics with optimal numerical dissipation", Comput. Method. Appl. Mech. Eng., 137, 175-188. https://doi.org/10.1016/S0045-7825(96)01036-5
- Kadkhodayan, M., Alamatian, J. and Turvey, G.J. (2008), "A new fictitious time for the dynamic relaxation (DXDR) method", Int. J. Numer. Meth. Eng, 74, 996-1018. https://doi.org/10.1002/nme.2201
- Katona, M. and Zienkiewicz, O.C. (1985), "A unified set of single step algorithms Part 3: The beta-m method, a generalization of the Newmark scheme", Int. J. Numer. Meth. Eng, 21, 1345-1359. https://doi.org/10.1002/nme.1620210713
- Keierleber, C.W. and Rosson, B.T. (2005), "Higher-Order Implicit Dynamic Time Integration Method", J. Struct. Eng., ASCE, 131(8), 1267-1276. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:8(1267)
- Kim, S.J., Cho, J.Y. and Kim, W.D. (1997), "From the trapezoidal rule to higher order accurate and unconditionally stable time-integration method for structural dynamics", Comput. Method. Appl. Mech. Eng., 149, 73-88. https://doi.org/10.1016/S0045-7825(97)00061-3
- Liu, Q., Zhang, J. and Yan, L. (2010), "A numerical method of calculating first and second derivatives of dynamic response based on Gauss precise time step integration method", Euro. J. Mech. A/Solids, 29, 370-377. https://doi.org/10.1016/j.euromechsol.2009.11.006
- Loureiro, F.S. and Mansur, W.J. (2010), "A novel time-marching scheme using numerical Green's functions: A comparative study for the scalar wave equation", Comput. Method. Appl. Mech. Eng., 199, 1502-1512. https://doi.org/10.1016/j.cma.2009.12.016
- Mancuso, M. and Ubertini, F. (2002), "The Norsett time integration methodology for finite element transient analysis", Comput. Method. Appl. Mech. Eng., 191, 3297-3327. https://doi.org/10.1016/S0045-7825(02)00264-5
- Mickens, R.E. (2005), "A numerical integration technique for conservative oscillators combining non-standard finite differences methods with a Hamilton's principle", J. Sound. Vib., 285, 477-482. https://doi.org/10.1016/j.jsv.2004.09.027
- Modak, S. and Sotelino, E. (2002), "The generalized method for structural dynamic applications", Adv. Eng. Softw., 33, 565-575. https://doi.org/10.1016/S0965-9978(02)00079-0
- Paz, M. (1979), Structural Dynamics: Theory and Computation, McGraw Hill, New York.
- Pegon, P. (2001), "Alternative characterization of time integration schemes", Comput. Method. Appl. Mech. Eng., 190, 2701-2727.
- Penry, S.N. and Wood, W.L. (1985), "Comparison of some single-step methods for the numerical solution of the structural dynamic equation", Int. J. Numer. Meth. Eng., 21, 1941-1955. https://doi.org/10.1002/nme.1620211102
- Rama Mohan Rao, M. (2002), "A parallel mixed time integration algorithm for nonlinear dynamic analysis", Adv. Eng. Softw., 33, 261-271. https://doi.org/10.1016/S0965-9978(02)00021-2
- Regueiro, R.A. and Ebrahimi, D. (2010), "Implicit dynamic three-dimensional finite element analysis of an inelastic biphasic mixture at finite strain", Comput. Method. Appl. Mech. Eng., 199, 2024-2049. https://doi.org/10.1016/j.cma.2010.03.003
- Rezaiee-Pajand, M. and Alamatian, J. (2008), "Implicit higher order accuracy method for numerical integration in dynamic analysis", J. Struct. Eng., ASCE, 134(6), 973-985. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:6(973)
- Rezaiee-Pajand, M. and Alamatian, J. (2008), "Numerical time integration for dynamic analysis using new higher order predictor-corrector method", J. Eng. Comput., 25(6), 541-568. https://doi.org/10.1108/02644400810891544
- Rezaiee-Pajand, M. and Alamatian, J. (2008), "Nonlinear dynamic analysis by Dynamic Relaxation method", J. Struct. Eng. Mech., 28(5), 549-570. https://doi.org/10.12989/sem.2008.28.5.549
- Rezaiee-Pajand, M., Sarafrazi, S.R. (2010), "A mixed and multi-step higher-order implicit time integration family", Proceeding of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 224, 2097-2108. https://doi.org/10.1243/09544062JMES2093
- Rezaiee-Pajand, M., Sarafrazi, S.R. and Hashemian, M. (2011), "Improving stability domains of the implicit higher order accuracy method", Int. J. Numer. Meth. Eng., 88, 880-896. https://doi.org/10.1002/nme.3204
- Smolinski, P., Belytschko, T. and Neal, M. (1988), "Multi time step integration using nodal partitioning", Int. J. Numer. Meth. Eng., 26, 349-359. https://doi.org/10.1002/nme.1620260205
- Soares, D. and Mansur, W.J. (2005), "A frequency-domain FEM approach based on implicit Green's functions for non-linear dynamic analysis", Int. J. Solid. Struct., 42(23), 6003-6014. https://doi.org/10.1016/j.ijsolstr.2005.05.047
- Tamma, K.K., Zhou, X. and Sha, D. (2001), "A Theory of development and design of generalized integration operators for computational structural dynamics", Int. J. Numer. Meth. Eng., 50, 1619-1664. https://doi.org/10.1002/nme.89
- Wang, M.F. and Au, F.T.K. (2009), "Precise integration methods based on Lagrange piecewise interpolation polynomials", Int. J. Numer. Meth. Eng., 77, 998-1014. https://doi.org/10.1002/nme.2444
- Wieberg, N.E. and Li, X.D. (1993), "A post- processing technique and an a posteriori error estimate for the Newmark method in dynamic analysis", Earthq. Eng. Struct. Dyn., 22, 465-489. https://doi.org/10.1002/eqe.4290220602
- Wood, W.L. (1984), "A unified set of single step algorithms Part 2: Theory", Int. J. Numer. Meth. Eng., 20, 2303-2309. https://doi.org/10.1002/nme.1620201210
- Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1981), "A alpha modification of Newmark's method", Int. J. Numer. Meth. Eng., 15, 1562-1566
- Zhai, W.M. (1996), "Two simple fast integration methods for large-scale dynamic problems in engineering", Int. J. Numer. Meth. Eng., 39, 4199-4214. https://doi.org/10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
- Zhang, Y., Sause, R., Ricles, J.M. and Naito, C.J. (2005), "Modified predictor-corrector numerical scheme for real-time pseudo dynamic tests using state-space formulation", Earthq. Eng. Struct. Dyn., 34, 271-288. https://doi.org/10.1002/eqe.425
- Zhou, X. and Tamma, K.K. (2004), "Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics", Int. J. Numer. Meth. Eng., 59, 597-668. https://doi.org/10.1002/nme.873
- Zienkiewicz, O.C., Wood, W.L. and Taylor, R.L. (1984), "A unified set of single step algorithms Part 1: General formulation and applications", Int. J. Numer. Meth. Eng., 20, 1529-1552. https://doi.org/10.1002/nme.1620200814
- Zuijlen, A.H.V. and Bijl, H. (2005), "Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations", Comput. Struct., 83, 93-105. https://doi.org/10.1016/j.compstruc.2004.06.003
피인용 문헌
- Explicit dynamic analysis using Dynamic Relaxation method vol.175, 2016, https://doi.org/10.1016/j.compstruc.2016.07.008
- A family of dissipative structure-dependent integration methods vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.815
- An efficient explicit framework for determining the lowest structural buckling load using Dynamic Relaxation method vol.45, pp.4, 2017, https://doi.org/10.1080/15397734.2016.1238765
- Improved formulation for a structure-dependent integration method vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.149
- Applications of a Family of Unconditionally Stable, Dissipative, Explicit Methods to Pseudodynamic Tests vol.41, pp.1, 2017, https://doi.org/10.1007/s40799-016-0151-4
- Assessments of dissipative structure-dependent integration methods vol.62, pp.2, 2013, https://doi.org/10.12989/sem.2017.62.2.151
- Extended implicit integration process by utilizing nonlinear dynamics in finite element vol.64, pp.4, 2013, https://doi.org/10.12989/sem.2017.64.4.495
- Highly accurate family of time integration method vol.67, pp.6, 2013, https://doi.org/10.12989/sem.2018.67.6.603
- A dissipative family of eigen-based integration methods for nonlinear dynamic analysis vol.75, pp.5, 2013, https://doi.org/10.12989/sem.2020.75.5.541
- Numerical formulation of P-I diagrams for blast damage prediction and safety assessment of RC panels vol.75, pp.5, 2013, https://doi.org/10.12989/sem.2020.75.5.607
- Survey of cubic B-spline implicit time integration method in computational wave propagation vol.79, pp.4, 2013, https://doi.org/10.12989/sem.2021.79.4.473