DOI QR코드

DOI QR Code

New implicit higher order time integration for dynamic analysis

  • Alamatian, Javad (Civil Engineering Department, Mashhad Branch, Islamic Azad University)
  • Received : 2012.06.10
  • Accepted : 2013.11.09
  • Published : 2013.12.10

Abstract

In this paper new implicit time integration called N-IHOA is presented for dynamic analysis of high damping systems. Here, current displacement and velocity are assumed to be functions of the velocities and accelerations of several previous time steps, respectively. This definition causes that only one set of weighted factors is calculated from the Taylor series expansion which leads to a simple approach and reduce the computational efforts. Moreover a comprehensive study on stability of the proposed method i.e., N-IHOA compared with IHOA integration which is performed based on amplification matrices proves the ability of the N-IHOA in high damping vibrations such as control systems. Also, wide range of numerical examples which contains single/multi degrees of freedom, damped/un-damped, free/forced vibrations from finite element/finite difference demonstrate that the accuracy and efficiency of the proposed time integration is more than the common approaches such as the IHOA, the Wilson-${\theta}$ and the Newmark-${\beta}$.

Keywords

References

  1. Alamatian, J. (2012), "A new formulation for fictitious mass of the dynamic relaxation method with kinetic damping", Comput. Struct., 90-91, 42-54. https://doi.org/10.1016/j.compstruc.2011.10.010
  2. Bathe, K.J. (2007), "Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme", Comput. Struct, 85, 437-445. https://doi.org/10.1016/j.compstruc.2006.09.004
  3. Bathe, K.J. and Baig, M.M.I. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct, 83, 2513-2524. https://doi.org/10.1016/j.compstruc.2005.08.001
  4. Chung, J. and Hulbert, G. (1993), "A time integration method for structural dynamics with improved numerical dissipation: the generalized $\alpha$-method", J. Appl. Mech., 30, 371-384.
  5. Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, McGraw Hill, New York.
  6. Felippa, C.A. (1999), Nonlinear Finite Element Methods, http://www.colorado.edu /courses.d /nfemd/.
  7. Fung, T.C. (1997), "Third order time-step integration methods with controllable numerical dissipation", Commun. Numer. Meth. Eng., 13, 307-315. https://doi.org/10.1002/(SICI)1099-0887(199704)13:4<307::AID-CNM64>3.0.CO;2-2
  8. Fung, T.C. (1998), "Complex-time step newmark methods with controllable numerical dissipation", Int. J. Numer. Meth. Eng., 41, 65-93. https://doi.org/10.1002/(SICI)1097-0207(19980115)41:1<65::AID-NME270>3.0.CO;2-F
  9. Gobat, J.I. and Grosenbaugh, M.A. (2001), "Application of the generalized-α method to the time integration of the cable dynamics equations", Comput. Method. Appl. Mech. Eng., 190, 4817-4829. https://doi.org/10.1016/S0045-7825(00)00349-2
  10. Hibler, H.M., Hughes, T.J.R. and Taylor, R.L. (1977), "Improver numerical dissipation for time integration algorithm in structural dynamics", Earthq. Eng. Struct. Dyn., 5, 283-292. https://doi.org/10.1002/eqe.4290050306
  11. Hoff, C. and Taylor, R.L. (1990), "Higher derivative explicit one step methods for non-linear dynamic problems. Part I: Design and theory", Int. J. Numer. Meth. Eng., 29, 275-290. https://doi.org/10.1002/nme.1620290205
  12. Hulbert, G.M. (1994), "A unified set of single-step asymptotic annihilation algorithms for structural dynamics", Comput. Method. Appl. Mech. Eng., 113, 1-9. https://doi.org/10.1016/0045-7825(94)90208-9
  13. Hulbert, G. and Chung, J. (1996), "Explicit time integration algorithm for structural dynamics with optimal numerical dissipation", Comput. Method. Appl. Mech. Eng., 137, 175-188. https://doi.org/10.1016/S0045-7825(96)01036-5
  14. Kadkhodayan, M., Alamatian, J. and Turvey, G.J. (2008), "A new fictitious time for the dynamic relaxation (DXDR) method", Int. J. Numer. Meth. Eng, 74, 996-1018. https://doi.org/10.1002/nme.2201
  15. Katona, M. and Zienkiewicz, O.C. (1985), "A unified set of single step algorithms Part 3: The beta-m method, a generalization of the Newmark scheme", Int. J. Numer. Meth. Eng, 21, 1345-1359. https://doi.org/10.1002/nme.1620210713
  16. Keierleber, C.W. and Rosson, B.T. (2005), "Higher-Order Implicit Dynamic Time Integration Method", J. Struct. Eng., ASCE, 131(8), 1267-1276. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:8(1267)
  17. Kim, S.J., Cho, J.Y. and Kim, W.D. (1997), "From the trapezoidal rule to higher order accurate and unconditionally stable time-integration method for structural dynamics", Comput. Method. Appl. Mech. Eng., 149, 73-88. https://doi.org/10.1016/S0045-7825(97)00061-3
  18. Liu, Q., Zhang, J. and Yan, L. (2010), "A numerical method of calculating first and second derivatives of dynamic response based on Gauss precise time step integration method", Euro. J. Mech. A/Solids, 29, 370-377. https://doi.org/10.1016/j.euromechsol.2009.11.006
  19. Loureiro, F.S. and Mansur, W.J. (2010), "A novel time-marching scheme using numerical Green's functions: A comparative study for the scalar wave equation", Comput. Method. Appl. Mech. Eng., 199, 1502-1512. https://doi.org/10.1016/j.cma.2009.12.016
  20. Mancuso, M. and Ubertini, F. (2002), "The Norsett time integration methodology for finite element transient analysis", Comput. Method. Appl. Mech. Eng., 191, 3297-3327. https://doi.org/10.1016/S0045-7825(02)00264-5
  21. Mickens, R.E. (2005), "A numerical integration technique for conservative oscillators combining non-standard finite differences methods with a Hamilton's principle", J. Sound. Vib., 285, 477-482. https://doi.org/10.1016/j.jsv.2004.09.027
  22. Modak, S. and Sotelino, E. (2002), "The generalized method for structural dynamic applications", Adv. Eng. Softw., 33, 565-575. https://doi.org/10.1016/S0965-9978(02)00079-0
  23. Paz, M. (1979), Structural Dynamics: Theory and Computation, McGraw Hill, New York.
  24. Pegon, P. (2001), "Alternative characterization of time integration schemes", Comput. Method. Appl. Mech. Eng., 190, 2701-2727.
  25. Penry, S.N. and Wood, W.L. (1985), "Comparison of some single-step methods for the numerical solution of the structural dynamic equation", Int. J. Numer. Meth. Eng., 21, 1941-1955. https://doi.org/10.1002/nme.1620211102
  26. Rama Mohan Rao, M. (2002), "A parallel mixed time integration algorithm for nonlinear dynamic analysis", Adv. Eng. Softw., 33, 261-271. https://doi.org/10.1016/S0965-9978(02)00021-2
  27. Regueiro, R.A. and Ebrahimi, D. (2010), "Implicit dynamic three-dimensional finite element analysis of an inelastic biphasic mixture at finite strain", Comput. Method. Appl. Mech. Eng., 199, 2024-2049. https://doi.org/10.1016/j.cma.2010.03.003
  28. Rezaiee-Pajand, M. and Alamatian, J. (2008), "Implicit higher order accuracy method for numerical integration in dynamic analysis", J. Struct. Eng., ASCE, 134(6), 973-985. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:6(973)
  29. Rezaiee-Pajand, M. and Alamatian, J. (2008), "Numerical time integration for dynamic analysis using new higher order predictor-corrector method", J. Eng. Comput., 25(6), 541-568. https://doi.org/10.1108/02644400810891544
  30. Rezaiee-Pajand, M. and Alamatian, J. (2008), "Nonlinear dynamic analysis by Dynamic Relaxation method", J. Struct. Eng. Mech., 28(5), 549-570. https://doi.org/10.12989/sem.2008.28.5.549
  31. Rezaiee-Pajand, M., Sarafrazi, S.R. (2010), "A mixed and multi-step higher-order implicit time integration family", Proceeding of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 224, 2097-2108. https://doi.org/10.1243/09544062JMES2093
  32. Rezaiee-Pajand, M., Sarafrazi, S.R. and Hashemian, M. (2011), "Improving stability domains of the implicit higher order accuracy method", Int. J. Numer. Meth. Eng., 88, 880-896. https://doi.org/10.1002/nme.3204
  33. Smolinski, P., Belytschko, T. and Neal, M. (1988), "Multi time step integration using nodal partitioning", Int. J. Numer. Meth. Eng., 26, 349-359. https://doi.org/10.1002/nme.1620260205
  34. Soares, D. and Mansur, W.J. (2005), "A frequency-domain FEM approach based on implicit Green's functions for non-linear dynamic analysis", Int. J. Solid. Struct., 42(23), 6003-6014. https://doi.org/10.1016/j.ijsolstr.2005.05.047
  35. Tamma, K.K., Zhou, X. and Sha, D. (2001), "A Theory of development and design of generalized integration operators for computational structural dynamics", Int. J. Numer. Meth. Eng., 50, 1619-1664. https://doi.org/10.1002/nme.89
  36. Wang, M.F. and Au, F.T.K. (2009), "Precise integration methods based on Lagrange piecewise interpolation polynomials", Int. J. Numer. Meth. Eng., 77, 998-1014. https://doi.org/10.1002/nme.2444
  37. Wieberg, N.E. and Li, X.D. (1993), "A post- processing technique and an a posteriori error estimate for the Newmark method in dynamic analysis", Earthq. Eng. Struct. Dyn., 22, 465-489. https://doi.org/10.1002/eqe.4290220602
  38. Wood, W.L. (1984), "A unified set of single step algorithms Part 2: Theory", Int. J. Numer. Meth. Eng., 20, 2303-2309. https://doi.org/10.1002/nme.1620201210
  39. Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1981), "A alpha modification of Newmark's method", Int. J. Numer. Meth. Eng., 15, 1562-1566
  40. Zhai, W.M. (1996), "Two simple fast integration methods for large-scale dynamic problems in engineering", Int. J. Numer. Meth. Eng., 39, 4199-4214. https://doi.org/10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
  41. Zhang, Y., Sause, R., Ricles, J.M. and Naito, C.J. (2005), "Modified predictor-corrector numerical scheme for real-time pseudo dynamic tests using state-space formulation", Earthq. Eng. Struct. Dyn., 34, 271-288. https://doi.org/10.1002/eqe.425
  42. Zhou, X. and Tamma, K.K. (2004), "Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics", Int. J. Numer. Meth. Eng., 59, 597-668. https://doi.org/10.1002/nme.873
  43. Zienkiewicz, O.C., Wood, W.L. and Taylor, R.L. (1984), "A unified set of single step algorithms Part 1: General formulation and applications", Int. J. Numer. Meth. Eng., 20, 1529-1552. https://doi.org/10.1002/nme.1620200814
  44. Zuijlen, A.H.V. and Bijl, H. (2005), "Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations", Comput. Struct., 83, 93-105. https://doi.org/10.1016/j.compstruc.2004.06.003

Cited by

  1. Explicit dynamic analysis using Dynamic Relaxation method vol.175, 2016, https://doi.org/10.1016/j.compstruc.2016.07.008
  2. A family of dissipative structure-dependent integration methods vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.815
  3. An efficient explicit framework for determining the lowest structural buckling load using Dynamic Relaxation method vol.45, pp.4, 2017, https://doi.org/10.1080/15397734.2016.1238765
  4. Improved formulation for a structure-dependent integration method vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.149
  5. Applications of a Family of Unconditionally Stable, Dissipative, Explicit Methods to Pseudodynamic Tests vol.41, pp.1, 2017, https://doi.org/10.1007/s40799-016-0151-4
  6. Assessments of dissipative structure-dependent integration methods vol.62, pp.2, 2013, https://doi.org/10.12989/sem.2017.62.2.151
  7. Extended implicit integration process by utilizing nonlinear dynamics in finite element vol.64, pp.4, 2013, https://doi.org/10.12989/sem.2017.64.4.495
  8. Highly accurate family of time integration method vol.67, pp.6, 2013, https://doi.org/10.12989/sem.2018.67.6.603
  9. A dissipative family of eigen-based integration methods for nonlinear dynamic analysis vol.75, pp.5, 2013, https://doi.org/10.12989/sem.2020.75.5.541
  10. Numerical formulation of P-I diagrams for blast damage prediction and safety assessment of RC panels vol.75, pp.5, 2013, https://doi.org/10.12989/sem.2020.75.5.607
  11. Survey of cubic B-spline implicit time integration method in computational wave propagation vol.79, pp.4, 2013, https://doi.org/10.12989/sem.2021.79.4.473