References
- Balakrishnan, N., Rad, A. H. and Arghami, N. R. (2007). Testing exponentiality based on Kullback-Leibler information with progressively Type-II censored data. IEEE Transactions on Reliability, 56, 349-356. https://doi.org/10.1109/TR.2007.896682
- Barapour, S. and Rad, A. H. (2012). Testing goodness-of-fit for exponential distribution based on cumulative residual entropy. Communications in Statistics-Theory and Methods, 41, 1387-1396. https://doi.org/10.1080/03610926.2010.542857
- Park, S. (2012). Generalized Kullback-Leibler information and its extensions to censored and discrete cases. Journal of the Korean Data & Information Science Society, 23, 1223-1229. https://doi.org/10.7465/jkdi.2012.23.6.1223
- Park, S. (2013). On censored cumulative residual Kullback-Leibler information and goodness-of-fit test with Type II censored data. Submitted to Statistical Papers (under 2nd revision).
- Park, S., Rao, M. and Shin, D.W. (2012). On cumulative residual Kullback-Leibler information. Statistics and Probability Letters, 82, 2025-2032. https://doi.org/10.1016/j.spl.2012.06.015
- Park, S. and Shin, M. (2013). Kullback-Leibler information of Type I censored variable and its application. To appear in Statistics.
- Rao, M., Chen, Y., Vemuri, B.C. and Wang, F. (2004). Cumulative residual entropy: A new measure of information. IEEE Transactions on Information Theory, 50, 1220-1228. https://doi.org/10.1109/TIT.2004.828057
- Soofi, E. S. (2000). Principal information theoretic approaches. Journal of the American Statistical Association, 95, 1349-1353. https://doi.org/10.1080/01621459.2000.10474346
Cited by
- An adjusted cumulative Kullback-Leibler information with application to test of exponentiality vol.49, pp.1, 2013, https://doi.org/10.1080/03610926.2018.1529243