References
- Alaboud, F. M. (2009). Bayesian estimations for the extreme value distribution using progressive censored data and asymmetric loss. International Mathematical Forum, 8, 1603-1622.
- Balakrishnan, N. and Kannan, N. (2001). Point and interval estimation for the logistic distribution based on progressively type-ll censored samples. In Handbook of Statistics, 20, edited by Balakrishnan, N. and Rao, C. R., Elsevier, Oxford, 431-456.
- Balakrishnan, N., Kannan, N., Lin, C. T., and Wu, S. J. S. (2004). Inference for the extreme value distri-bution under progressively type-II censoring. Journal of Statistical Computation and Simulation, 74, 25-45. https://doi.org/10.1080/0094965031000105881
- Balakrishnan, N. and Puthenpura, N. (1986). Best linear unbiased estimators of location and scale param-eters of the half logistic distribution. Journal of Statistics and Computer Simulation, 25, 193-204. https://doi.org/10.1080/00949658608810932
- Balakrishnan, N. and Sandhu, R. A. (1995). A simple simulational algorithm for generating progressively type-ll censored samples. The American Statistician, 49, 229-230.
- Balakrishnan, N. and Wong, K. H. T. (1991). Approximate MLEs for the location and scale parameters of the half-logistic distribution with type-ll right censoring. IEEE Transactions on Reliability, 40, 140-145. https://doi.org/10.1109/24.87114
- Chen, M. H. and Shao, Q. M. (1999). Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics. 8, 69-92.
- Kang, S. B., Cho, Y. S., and Han, J. T. (2008). Estimation for the half logistic distribution under progres-sively type-ll censoring. Communications of the Korean Statistical Society, 15, 815-823. https://doi.org/10.5351/CKSS.2008.15.6.815
- Kang, S. B., Cho, Y. S., and Han, J. T. (2009). Estimation for the half logistic distribution based on double hybrid censored samples. Communications of the Korean Statistical Society, 16, 1055-1066. https://doi.org/10.5351/CKSS.2009.16.6.1055
- Kang, S. B. and Seo, J. I (2011). Estimation in an exponentiated half logistic distribution under progressively type-II censoring. Communications of the Korean Statistical Society, 18, 657-666. https://doi.org/10.5351/CKSS.2011.18.5.657
- Kim, Y., Kang, S. B., and Seo, J. I. (2011). Bayesian estimations on the exponentiated distribution family with type-II right censoring. Communications of the Korean Statistical Society, 18, 603-613. https://doi.org/10.5351/CKSS.2011.18.5.603
- Kim, Y., Kang, S. B., and Seo, J. I. (2011). Bayesian estimations on the exponentiated half triangle distri-bution under type-I hybrid censoring. Journal of the Korean Data & Information Science Society, 22, 565-574.
- Kim, Y., Kang, S. B., and Seo, J. I. (2011). Bayesian estimation in the generalized half logistic distribution under progressively type-II censoring. Journal of the Korean Data & Information Science Society, 22, 977-987.
- Lindley, D. V. (1980). Approximate Bayesian methods estimations. In Bayesian Statistics, edited by Bernardo, J. M., De Groot, M. H., Lindley, D. V. and Smith, A. F. M., Valencia Press, Spain.
- Nelson, W. B. (1982). Applied life data analysis, John Willey & Sons, New York.
Cited by
- Goodness-of-fit tests for the inverse Weibull or extreme value distribution based on multiply type-II censored samples vol.25, pp.4, 2014, https://doi.org/10.7465/jkdi.2014.25.4.903
- Estimation for the half-logistic distribution based on generalized progressive hybrid censoring vol.29, pp.4, 2018, https://doi.org/10.7465/jkdi.2018.29.4.1049
- Estimation of the exponentiated half-logistic distribution based on multiply Type-I hybrid censoring vol.27, pp.1, 2013, https://doi.org/10.29220/csam.2020.27.1.047
- Classical and Bayesian Inference of an Exponentiated Half-Logistic Distribution under Adaptive Type II Progressive Censoring vol.23, pp.12, 2013, https://doi.org/10.3390/e23121558