Abstract
For a variety of vision systems such as car omni-directional surveillance systems and robot vision systems, many cameras have been equipped and used. In order to detect corners of grid pattern in AVM(Around View Monitoring) systems, after the non-linear radial distortion image obtained from wide-angle camera is corrected, corners of grids of the distortion corrected image must be detected. Though there are transformations such as Sub-Pixel and Hough transformation as corner detection methods for AVM systems, it is difficult to achieve automatic detection by Sub-Pixel and accuracy by Hough transformation. Therefore, we showed that the automatic detection proposed in this paper, which detects corners accurately from the distortion corrected image could be applied for AVM systems, by designing and implementing it, and evaluating its performance.
자동차를 위한 전방향(omni-directional) 감시 시스템, 로봇의 시각 역할 등 다양한 비전 시스템에서 카메라가 장착되어 사용되고 있다. AVM(Around View Monitoring) 시스템에서 그리드 패턴의 코너를 검출하기 위해서는 광각 카메라에서 획득한 비선형적인 방사 왜곡을 가진 영상의 왜곡 보정 작업을 수행한 후 왜곡이 보정된 영상 내부의 그리드 패턴 각 코너들을 자동으로 검출하여야 한다. 기존 AVM 시스템에 사용되는 직선과 코너 검출 방법에는 Sub-Pixel, 허프 변환 등이 있으나, Sub-Pixel 방법은 자동검출이 어렵고, 허프변환은 정확도에 문제가 있다. 따라서, 본 논문에서는 왜곡 보정 영상을 입력 영상으로 받아 그리드 패턴의 코너를 자동으로 정확하게 검출하는 방법을 설계하고 구현하여 성능을 평가함으로써 AVM 시스템에서 코너를 검출하는 부분에 적용시킬 수 있음을 보였다.