DOI QR코드

DOI QR Code

Characteristic Analysis and Effect of Particulate Material in Drinking Water Distribution Networks

상수도관망에서 입자성 물질의 특성분석 및 영향조사

  • Kim, Do-Hwan (K-water Research Institute, Korea Water Resources Corporation) ;
  • Lee, Doo-Jin (K-water Research Institute, Korea Water Resources Corporation) ;
  • Hwang, Jin-Su (K-water Research Institute, Korea Water Resources Corporation) ;
  • Choi, Doo-Yong (K-water Research Institute, Korea Water Resources Corporation)
  • 김도환 (한국수자원공사 K-water연구원) ;
  • 이두진 (한국수자원공사 K-water연구원) ;
  • 황진수 (한국수자원공사 K-water연구원) ;
  • 최두용 (한국수자원공사 K-water연구원)
  • Received : 2012.07.03
  • Accepted : 2013.04.25
  • Published : 2013.05.30

Abstract

Particulates in drinking water distribution system (DWDS) are mostly influenced by internal corrosion of metal pipes and sediment in pipelines due to the solution of this effect is limited. The particle size, component and properties of compounds for particulates in distributed water are different and the difference of these characteristics will be occurred by the kind of facilities, pipe condition, external factors and supply system etc. In this study, conducting the investigation of water quality in DWDS researches with particulates in the water. Monitoring sites were each water supply reservoir and the end of water supply area in DWDS. To collect particulate material at each sampling site, $47{\phi}$ glass microfiber filter type GF/C was performed using a filtration. Substances that the effect of the turbidity in the water according to particulate suspended solids and inorganic materials is due to the increasing particulates in the end of DWDS were increased. The result of compounds analysis by using X-ray diffraction (XRD) were Goethite (${\alpha}$-FeOOH), Magnetite ($Fe_3O_4$) in the end of DWDS and Quartz ($SiO_2$), Yeelimite ($Ca_4Al_6O_{12}SO_4$) at the effluent of waterworks and reservoirs. There were differences the compounds and sediments in the releasing or remaining water distribution facilities.

상수도관망에서의 입자성 물질들은 대부분 금속관로의 내부부식 및 퇴적물에 의한 영향으로 이를 해결할 수 있는 방법은 제한적이라 할 수 있다. 수중의 입자성 물질들은 입자크기, 화합물 성분 및 성상들이 다르며, 이들 특성은 시설별 종류, 관 상태, 외부적 요인 및 공급과정 등에 의해서 차이가 발생하게 된다. 본 연구에서는 상수도관망의 수질조사를 수행하면서 수중의 입자성 물질들에 대한 조사를 실시하고자 하였으며, 정수를 공급하는 각 계통들의 배수지 및 관말지역을 대상으로 실시하였다. 각 조사지점에서 입자성 물질을 포집하기 위해 $47{\phi}$ 의 유리섬유여지(GF/C)를 이용하여 여과를 수행하였다. 수중의 탁도에 영향을 미치는 물질들이 입자성 부유물질과 무기물질들에 의한 것으로 관말지역으로 갈수록 입자성 물질이 증가하는 것으로 조사되었다. XRD를 이용한 입자성 물질의 화합물 성분분석결과 상수도관망의 관말지역에서 가장 많은 화합물은 Goethite (${\alpha}$-FeOOH), Magnetite ($Fe_3O_4$) 등이고 정수와 각 배수지 유출수에서는 Quartz ($SiO_2$)와 Yeelimite ($Ca_4Al_6O_{12}SO_4$) 등도 있는 것으로 조사되어 각 상수도 시설별 용출되거나 잔존하고 있는 화합물 성분이 다르며, 침적물들에도 차이가 있었다.

Keywords

References

  1. Vreeburg, J. H. G., Schippers, D., Verberk, J. Q. J. C. and van Dijk, J. C., "Impact of particles on sediment accumulation in a drinking water distribution system," Water Res., 42(16), 4233-4242(2008). https://doi.org/10.1016/j.watres.2008.05.024
  2. Ahn, J. C., Lee, S. W., Baek, K. I., Choi, Y. J., Choi, J. H., Jeong, E. S., Park, H. and Koo, J. Y., "Hydraulics and water quality characteristics of flushing in distribution pipes," J. Kor. Soc. Water Wast., 22(1), 93-103(2008).
  3. Verberk, J. Q. J. C., Hamilton, L. A., O'Halloran, K. J., van der Horst, W. and Vreeburg, J., "Analysis of particle numbers, size and composition in drinking water transportation pipelines: results of online measurements," Water Sci. Technol.: Water Supply, 6(4), 35-43(2006).
  4. Vreeburg, J. H. G. and Boxall, J. B., "Discolouration in potable water distribution systems: A review," Water Res., 41(3), 519-529(2007). https://doi.org/10.1016/j.watres.2006.09.028
  5. Boyd, G. R., Tarbet, N. K., Oliphant, R. J., Kirmeyer, G. J., Murphy, B. M. and Serpente, R. F., "Lead pipe rehabilitation and replacement techniques for drinking water service: review of available and emerging technologies," Trenchless Technol. Res., 15(1), 13-24(2000).
  6. Giustolisi, O., Laucelli, D. and Savic, D. A., "Development of rehabilitation plans for water mains replacement considering risk and cost-benefit assessment," Civil Eng. Environ. Syst., 23(3), 175-190(2006). https://doi.org/10.1080/10286600600789375
  7. Kim, D. H., Kim, D. Y., Hong S. H., Kim, J. W. and Kim, C. W., "Development and implementation of a corrosion control algorithm based on calcium carbonate precipitation potential(CCPP) in a drinking water distribution system," J. Water Supply: Res. Technol.-AQUA, 57(7), 531-539(2008). https://doi.org/10.2166/aqua.2008.047
  8. Kim, D. H., Cha, J. H., Hong, S. H., Kim, D. Y. and Kim, C. W., "Control of corrosive water in advanced water treatment plant by manipulating calcium carbonate precipitation potential," Kor. J. Chem. Eng., 26(1), 90-101(2009). https://doi.org/10.1007/s11814-009-0015-z
  9. Husband, P. S. and Boxall, J. B., "Asset deterioration and discolouration in water distribution systems," Water Res., 45(1), 113-124(2011). https://doi.org/10.1016/j.watres.2010.08.021
  10. Boxall, J. B., Skipworth, P. J. and Saul, A. J., "Aggressive flushing for discolouration event mitigation in water distribution networks," Water Sci. Technol.: Water Supply, 3(1-2), 179-186(2003).
  11. Aisopou, A., Stoianov, I. and Graham, N. J. D., "In-pipe water quality monitoring in water supply systems under steady and unsteady state flow conditions: A quantitative assessment," Water Res., 46(1), 235-246(2012). https://doi.org/10.1016/j.watres.2011.10.058
  12. Vreeburg, J. H. G., Schaap, P. and van Dijk, J. C., "Measuring discoloration risk: resuspension potential method," Proceedings IWA Conference Leading Edge Technology, Prague (2004).
  13. Verberk, J. Q. J. C., O´Halloran, K. J., Hamilton, L. A., Vreeburg, J. H. G. and van Dijk, J.C., "Measuring particles in drinking water transportation systems with particle counters," J. Water Supply: Res. Technol.-AQUA, 56(5), 345-355(2007). https://doi.org/10.2166/aqua.2007.069
  14. Hall, J., Zaffiro, A. D., Marx, R. B., Kefauver, P. C., Krishnan, E. R., Haught, R. C. and Herrmann, J. G., "On-line water quality parameters as indicators of distribution system contamination," J. AWWA, 99(1), 66-77(2007).
  15. Skadsen, J., Janke, R., Grayman, W., Samuels, W., Tenbroek, M., Steglitz, B. and Bahl, S., "Distribution system online monitoring for detecting contamination and water quality changes," J. AWWA, 100(7), 81-94(2008).
  16. Jang, D. H. and Shin, Y., "Comparison analysis according to the change in the method of supply local water service," Kor. Policy Sci. Rev., 13(1), 145-165(2009).
  17. Cha, D. H., "Efficiencies for local water supply services on trust and consignment," J. Kor. Water Wast. Works Assoc., 6, 60-65(2004).
  18. Choi, J. G., "Operations and improvement about multi-reginal water supply services," Magazine Kor. Water Res. Assoc., 28(3), 29-33(1995).
  19. Ha, J. G., "Present condition of construction and direction of development for multi-regional water supply services," Magazine Kor. Water Res. Assoc., 28(3), 18-22(1995).
  20. Lee, J. H., Shin, W. U., Park, Y. G., Kim, L. H. and Nam, I. G., "Water and wastewater Engineering," Goomibook(2011).
  21. Bruker AXS, http://www.bruker-axs.com
  22. AWWA Research Foundation, "Internal corrosion of water distribution system," Second Edition(1996).

Cited by

  1. Impact assessment for water pressure and turbidity occurrence by changes in water flow rate of large consumer at water distribution networks vol.28, pp.3, 2014, https://doi.org/10.11001/jksww.2014.28.3.277
  2. The Component Analysis of Foreign Substance Occurred in Water Distribution Networks vol.36, pp.9, 2014, https://doi.org/10.4491/KSEE.2014.36.9.614
  3. Establishment of a Practical Approach for Characterizing the Source of Particulates in Water Distribution Systems vol.8, pp.2, 2016, https://doi.org/10.3390/w8020049
  4. Effect of corrosive water quality control and corrosion index monitoring in pilot scale pipeline simulator vol.32, pp.2, 2018, https://doi.org/10.11001/jksww.2018.32.2.183
  5. Characteristics of water quality and bacterial communities in three water supply pipelines vol.9, pp.7, 2019, https://doi.org/10.1039/C8RA08645A