DOI QR코드

DOI QR Code

Sequential Anoxic/Aerobic Biofilm Reactors and MF Membrane System for the Removal of Perchlorate and Nitrate

무산소/호기생물막반응조와 MF막의 연속처리에 의한 퍼클로레이트와 질산염 제거

  • Choi, Hyeoksun (Department of Civil and Environmental Engineering, Wonkwang University)
  • 최혁순 (원광대학교 토목환경공학과)
  • Received : 2013.04.03
  • Accepted : 2013.04.22
  • Published : 2013.05.30

Abstract

This research was conducted to investigate whether sequential anoxic/aerobic biofilm reactors and microfilteration (MF) membrane system can be used as a direct treatment for the removal of perchlorate and nitrate in groundwater. The biofilm process consisted of an anoxic first stage to remove perchlorate and nitrate and aerobic second stage to remove remaining acetate used as a carbon source for dissimilatory reduction of perchlorate and nitrate. In final stage, hollow fiber MF membrane was used to remove turbidity. In this research, perchlorate was reduced from the influent concentration of 102 ${\mu}/L$ to below the IC detection level (5 ${\mu}/L$) and nitrate was reduced from 61.8 mg/L (14 mg/L $NO_3$-N) to 4.4 mg/L (1 mg/L $NO_3$-N). Acetate used as a carbon source was consumed from 179 mg/L $CH_3COO-$ to 117 and 11 mg/L $CH_3COO^-$ in effluents from anoxic and aerobic biofilm reactors, respectively. Turbidity was reduced from 3.0 NTU to 1.5, 0.3, and 0.2 NTU in effluents from anoxic/aerobic biofilm reactors and MF membrane, respectively. It is expected that the sequential anoxic/aerobic biofilm reactors and MF membrane system can efficiently remove perchlorate and nitrate in surface water or groundwater.

본 연구는 퍼클로레이트($ClO_4{^-}$)와 질산염($NO_3{^-}$)의 직접적인 처리방법으로 무산소/호기생물막반응조와 MF막에 의한 연속처리의 적용 가능성을 조사하였다. 생물막 처리공정은 첫 번째 단계로 퍼클로레이트와 질산염의 제거를 위해 무산소생물막반응조를 이용하였고 두 번째 단계로 이화적 퍼클로레이트와 질산염 환원을 위해 사용된 잔류탄소원의 제거를 위해 호기생물막반응조가 도입되었다. 그리고 마지막 단계로 탁도제거를 위해 중공사형 MF막을 적용하였다. 본 연구에서 102 ${\mu}g/L$ $ClO_4{^-}$와 61.8 mg/L $NO_3{^-}$ (14 mg/L $NO_3$-N)가 유입수로 주입되어 퍼클로레이트는 IC 검출농도 이하(5 ${\mu}g/L$ $ClO_4{^-}$)로 제거되었으며 질산염은 최종 처리수의 농도가 4.4 mg/L $NO_3{^-}$ (1 mg/L $NO_3$-N)로 제거되었다. 탄소원으로 사용된 과잉의 179 mg/L 유입 $CH_3COO^-$는 무산소생물막반응조의 유출수에서 117 mg/L, 호기생물막반응조의 유출수에서 11 mg/L로 감소하였다. 3 NTU의 유입 탁도는 무산소/호기생물막반응조의 유출수에서 1.5와 0.3 NTU였으며 최종 MF막의 유출수에서 0.2 NTU였다. 이 결과는 지표수와 지하수에 포함된 저농도 퍼클로레이트와 질산염 오염의 직접적인 처리방법으로 무산소/호기생물막반응조와 MF막의 연속처리가 적용될 수 있음을 의미하는 것으로 사료된다.

Keywords

References

  1. Gullick, R. W., Lechevallier, M. W. and Barhorst, T., "Occurrence of perchlorate in drinking waster sources," J. Am. Water Works Assn., 93(1), 66-77(2001).
  2. Urbansky, E. T., "Perchlorate chemistry: implications for analysis and remediation," Biorem. J., 2(2), 81-95(1998). https://doi.org/10.1080/10889869891214231
  3. Urbansky, E. T. and Schock, M. R., "Issues in managing the risks associated with perchlorate in drinking water," J. Environ. Manage., 56(2), 79-95(1999). https://doi.org/10.1006/jema.1999.0274
  4. U.S. Environmental Protection Agency, Technical fact sheetperchlorate, EPA 505-F-11-003, http://www.epa.gov/fedfac/pdf/technical_fact_sheet_perchlorate.pdf, May(2012).
  5. Ministry of Environment, Guideline for perchlorate reduction in Nakdong River, http://www.me.go.kr/web/286/me/common/board/detail.do?boardId=notice_02&decorator=me&idx=149317, September(2006).
  6. Tripp, A. R. and Clifford, D. A., "Ion exchange for the remediation of perchlorate-contaminated drinking water," J. Am. Water Works Assoc., 98(4), 105-114(2006).
  7. Yoon, Y., Amy, G., Cho, J., Her, N. and Pellegrino, J., "Transprot of perchlorate through NF and UF membranes," Desalination, 147(1-3), 11-17(2002). https://doi.org/10.1016/S0011-9164(02)00564-7
  8. Coates, J. D., Michaelidou, U., Bruce, R. A., O'connor, S. M., Crespi, J. N. and Achenbach, L. A., "Ubiquity and diversity of dissimilatory (per)chlorate reducing bacteria," Appl. Environ. Microbiol., 65(12), 5234-5241(1999).
  9. Logan, B. E., "A review of chlorate- and perchlroate- respiring microorganisms," Biorem. J., 2(2), 69-79(1998). https://doi.org/10.1080/10889869891214222
  10. Rikken, G. G., Kroon, A. G. M., and van Ginkel, C. G., "Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation," Appl. Microbiol. Biotechnol., 45(3), 420-426(1996). https://doi.org/10.1007/s002530050707
  11. Paul, B. H., "Perchlorate biodegradation for water treatment," Environ. Sci. Technol. 39(11), 239A-247A(2005). https://doi.org/10.1021/es053280x
  12. Min, B., Evans, P. J., Chu, A. K. and Logan, B. E., "Perchlorate removal in sand and plastic media bioreactors," Water Res., 38(1), 47-60(2004). https://doi.org/10.1016/j.watres.2003.09.019
  13. Choi, H. and Silverstein, J., "Effluent recirculation to improve perchlorate reduction in a fixed biofilm reactor," Biotechnol. Bioeng., 98(1), 132-140(2007). https://doi.org/10.1002/bit.21425
  14. Oh, J. and Silverstein, J., "Acetate limitation and nitrite accumulation during denitrification," J. Environ. Eng., 125(3), 234-242(1999). https://doi.org/10.1061/(ASCE)0733-9372(1999)125:3(234)
  15. Herman, D. C. and Frankenberger, J. W. T., "Bacterial reduction of perchlorate and nitrate in water," J. Environ. Qual., 28(3), 1018-1024(1999)
  16. Choi, H. and Silverstein, J., "Inhibition of perchlorate reduction by nitrate in a fixed biofilm reactor," J. Hazard. Mater., 159(2-3), 440-445(2008) https://doi.org/10.1016/j.jhazmat.2008.02.038