DOI QR코드

DOI QR Code

마이크로웨이브 조사에 따른 산화알루미늄이 함유된 실리콘카바이드의 SF6 제거

Removal of SF6 over Silicon Carbide with Aluminium Oxide by Microwave Irradiation

  • Choi, Sung-Woo (Department of Environmental Science, Keimyung University)
  • 투고 : 2012.09.24
  • 심사 : 2013.03.18
  • 발행 : 2013.04.30

초록

$SF_6$는 지구온난화지수가 가장 높은 중요한 온실가스이다. 본 연구에서는 마이크로파 조사에 따른 산화알루미늄이 혼합된 실리콘카바이드의 SF6 제거실험을 실시하였다. DRE (Decomposition and Removal Efficiencies)실험은 3,000 ppm의 $SF_6$를 사용하여 GC-TCD를 통하여 분석하였다. 산화알루미늄의 함량이 10~30 wt%까지 $SF_6$의 제거효율은 증가하였으나 산화알루미늄의 함량이 40~50 wt%에서 제거효율이 감소하였다. 특히 $900^{\circ}C$ 이상 에서 SiC-$Al_2O_3$ (20 wt%)와 SiC-$Al_2O_3$ (30 wt%)는 99.99%의 $SF_6$ 제거효율을 보여주었으며 SiC-$Al_2O_3$ (30 wt%)가 $700^{\circ}C$에서 96.72%의 제거효율을 보여주었다. 마이크로파 조사량과 산화알루미늄의 함량을 고려시 SiC-$Al_2O_3$ (30 wt%)가 $SF_6$ 제거에 가장 적절하였다. 본 연구의 결과로 마이크로파에 의한 $SF_6$ 제거시 SiC에 $Al_2O_3$의 함량 조절이 중요할 것으로 사료되어진다.

$SF_6$ is the most important greenhouse gas with the highest GWP (global warming potential). The $SF_6$ decomposition study was performed with silicon carbide with aluminium oxide by microwave irradiation. DRE (Decomposition and Removal Efficiencie) of $SF_6$ were evaluated by GC-TCD unit using 3,000 ppm $SF_6$ gas. DRE of $SF_6$ was increased by $Al_2O_3$ contents to 10~30 wt%, otherwise $Al_2O_3$ content of 40~50 wt% was decreased. DRE of $SF_6$ up to 99.99% have been achieved in SiC-$Al_2O_3$ (20 wt%) and SiC-$Al_2O_3$ (30 wt%) above $900^{\circ}C$. Also, the DRE of SiC-$Al_2O_3$ (30 wt%) at $700^{\circ}C$ showed 96.72%. In addition to consideration microwave input energy and $Al_2O_3$ content, SiC-$Al_2O_3$ (30 wt%) can be suggested the best material to control $SF_6$. The results of this study suggest it is important to control content of $Al_2O_3$ in SiC for decomposition of $SF_6$ with microwave energy.

키워드

참고문헌

  1. Haughton, J. T., Meira Filho, L. G., Gallander, B. A., Harris, N., Kattenberg, A. and Maskel, K., Climate change 1995- the science of climate change, 1st ed., Cambridge University Press, New York, 121(1996).
  2. Kwon, J. S., Choi, S. S., Yoon, M. S. and Kim, S. l., "Reduction technology trend of CCS and $SF_{6}$," KEITI, 68-70 (2010).
  3. Radoiu, M. and Hussain, S., "Microwave plasma removal of sulphur hexafluoride," J. Hazard. Mater., 164, 39-45(2009). https://doi.org/10.1016/j.jhazmat.2008.07.112
  4. Park, H. G., Park, N. K., Lee, T. J., Chang, W. C. and Kwon, W. T., "Catalytic decomposition of $SF_{6}$ by hydrolysis over ${\gamma}-Al_{2}O_{3}$ supported metal oxide catalysts," Clean Technol., 18 (1), 83-88(2012). https://doi.org/10.7464/ksct.2012.18.1.083
  5. Lee, Y. C. and Jeon, J. K., "A study on catalytic process in pilot plant for abatement of PFC emission," Clean Technol., 18(2), 216-220(2012). https://doi.org/10.7464/ksct.2012.18.2.216
  6. Padma, D. K. and Vasudeva Murthy, A. R., "Thermal decomposition of sulphur hexafluoride," J. Fluorine. Chem., 5, 181-184(1975). https://doi.org/10.1016/S0022-1139(00)81706-6
  7. Cho, W. I., Baek, Y. S. and Kim, Y. C., "Manufacture of hydrogen and C2+ chemical from methane using microwave plasma and catalyst," J. Kor. Inst. Gas, 5(1), 15-20(2001).
  8. Chang, Y. C. and Carlistle, C. T., "Microwave process for volatile organic compound abatement," J. Air Waste Manage. Assoc., 36, 599-608(2001).
  9. Berteasu, A. J. and Badot, J. C., "High temperature microwave heating in refractory material," J. Microwave Power, 11, 315-320(1976).
  10. Tinga W. R., "Fundamentals of microwave material interactions and sintering," MRS symp. Proc., 124, 33-44(1994).
  11. Pandompatam, B., Liem, A. J., Frenette, R. and Wilson, M. A., "Effect of refractory on the thermal stability of $SF_{6}$," J. Air Pollut. Control Assoc., 39, 310-316(1989).
  12. Lee, S. H., Park, N. K., Yoon, S. H., Chang, W. C. and Lee, T. J., "Catalytic decomposition of $SF_{6}$ by hydrolysis and oxidation over ${\gamma}-Al_{2}O_{3}$," Clean Technol., 15(4), 273-276(2009).