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ON HOLDER’S INEQUALITY FOR THREE SEQUENCES

ERN GUN KwON AND WoO IN YANG

ABSTRACT. Recent results of Wu and Tian on refined Holder’s inequality
for two sequences are extended to the case of three sequences.

1. Statements of results

Classical Holder’s inequality for two positive sequences a = {a;}?_; and
b= {b;}_, states that

1 1
> aib; < (Z (ai)p> <Z (bz’)q> ;
i=1 i=1
where positive indexes p, ¢ are related to be £ + 1 = 1.
There are a lot of extensions of this inequality. We focus on a result of
Wu([3]) which extends this inequality by finding a quantity g(a,b), 0 < g(a,b) <
1, satisfying

=

(Z (bi)q> -9(a;b)

i=1

Z a;b; < (Z (ai)p>

i=1

when p, g are positive with % +é =1, and a result of Tian([2]) stating reversely

n n % n %
S aibs > (z (am) (z amq) gfad
i=1 i=1 i=1
when one of p, ¢ are negative with 1% +i=1.

We, in this note, extend results of Wu and Tian to the case of three sequences
as follows.

Theorem 1.1. Let a = {a;}]1,b = {b;}1_1,c = {c;}}-1 be positive sequences.
Let {e;}}—, satisfy 1 —ej+e, >0 forall j,k, 1 < j,k<n. Let p>q >0 and
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r>0with%—|—%+%=1.Then

> aibic; < <Z (ai)p>p (Z (bi)q> q (Z (Ci)r> ~g(a,b),

where

a,b)=<{1- i (b)) e Y ()" e 2 %
ey {1 <Z?_1(bi>q Y (@) ) } |

Theorem 1.2. Let a = {a;}!1,b={b;}"_1,c = {c;}’_, be positive sequences.
Let {e;}7 satisfy 1 —ej +ex >0 for all j,k, 1 <j,k<n. Let p < ¢ <0 and
r>0with%+%+%=1.Then

Q=
Sl

(Z (cm) - g(a.b),

i=1

Zaibici > <Z (ai)p> " (Z (bi)q>

i=1 =1

where

D1 (bi)? dic (a;)?

We give the proofs by modifying methods used in [3] and [2]. Theorem
1.1 will be proven in Section 2. Theorem 1.2 will be proven in Section 4
after preparing a lemma in Section 3. We refer to [1] for general theory on
inequalities.

2. Proof of Theorem 1.1

Note simply that

n 2 n n n n
<Z a,-bq;ci> = Zaibici Zaibici = ZZaibiciajbjcj
i=1 i=1 i=1 i=1j=1
n n n n n n
= Z Z aibic;a;bic; — Z Z abic;azbjcie; + Z Z aibiciabjcje;
i=1j=1 i=1j=1 i=1j=1
n n
= Z Z aibiciajbjcj (1 —e; + ej)
i=1j=1

= Zaibici Zajbjcj (]. —e; + ej) .
i=1 j=1
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Applying Hoélder’s inequality, the last quantity is at most

=

Jj=

—

Jj=

i=1

n
Jj=1

Applying Holder’s inequality one more time, the last quantity is at most

DD ) () (1—ei+ Bj)}

'{zn:(bj

j=1

(b)) (az)" (1 —e; + ej)}

j=1

Zaibici {Z (a;)" (1 — e+ ej)}
=1

:Zaibici {Z (aj)p (1 — €+ ej)}

P

P

p

)q(l—ei—&—ej)} {

1_1
i) (1— e+ ej)}

|

- {Z(a»” (b;)" (1 - e +ej>}

M=

.

<.

n

> b) (b

Jj=1

(b;)* (1

I
—

(b;)* (1

=

1

q

1_1
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—61+€j)}
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n

D e) (L—ei+ey)
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1
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Therefore

n
E a;b;c;
i=1
1

- P e q T r ’ i1 (bi) e i1 (@) e 1"
S@“”) (2“”) (Z”) {“(%Zf(bi)q ‘22?_1(<a)i>” )} |

The proof is complete.

3. Lemmas

We need the following easy lemma in proving Theorem 1.2. We include its
proof for the convenience of the reader.

Lemma 3.1. Let a;,b;,,¢; >0, (i=1,2,---,n), A\; <0 (j=1,2) and A\ +
Ao+ A3 =1. Then

n n A1 n Az n Az
Zaf‘%f‘%? > <Z ai> bi> (Z cz-> . (1)
i=1 i=1 i=1

i=1 i

Proof of Lemma 3.1. Since \; <0 (j =1,2) and Ay + A2 + A3 = 1, we have

1 A1 Ao . 1 A1 A2
—>0,——>0,——>0 th — - —— | =1.
W > 0, " > 0, )\3> wi )\3+< )\3>+< )\3)

Factorizing c¢; as

() ) () () 09
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and then using Holder’s inequality, we have

= =1 )\2
Thus,

which completes the proof. ([l

4. Proof of Theorem 1.2
Applying Lemma 3.1 twice, we have

n 2 n n
<Z aibicZ) = Z aibici Z ajbjcj (]. —e€; + €j)
i=1 i=1 j=1

S|
3

2 Zalb : {Z (a;)" (1 —ei +¢;) {Z (b)) (1 — e +¢5) (e5)" (1

(0)" (1 —e; +¢j)
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> ZZ (b)) (az)" (1 —e; + ¢;) Z ‘ (0)* ()" (1 = e; + ¢5)
DD @) (b)) (1 —ei+e)) D (@) (e)" (1 —ei+e;)
n 2(%_%) n =
o] )
=1 i=1
Y@ S0 =9 B e Y () = D 007D (@) e
Thus we obtain
Zazbzcz > {Z (bz)q} { (C’L)T}
i=1 i=1 =1
PBICOLD SHTEIEE S SOLES BICHLED SINED MBS
Therefore
zn:al-bicz
i=1
. & \a (e e’ ' (T ) e SE (@) e w
(o) (So) (Ser) (-G 5057 |

The proof is complete.
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