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NEW FAMILY OF BINARY SEQUENCES WITH

FOUR-VALUED CROSS-CORRELATION

Han-Doo Kim, Sung-Jin Cho∗, Min-Jeong Kwon, and Un-Sook Choi

Abstract. In this paper, we find the values and the number of occur-

rences of each value of the cross-correlation function Cd(τ) when d =
2k−1

2s−1
(2k(i+1) − 2ki + 2s+1 − 2k − 1), where n = 2k, s is an integer such

that 2s divides k, and i is odd.

1. Introduction

The design of binary sequences with good correlation properties are impor-
tant for many research areas in communication systems. Finding the cross-
correlation between two maximal length sequences of the same period has been
a meaningful research problem. For the theory of finite fields, maximal length
sequences and sequences in general, we refer to [5]. The finite field with q
elements will be denoted by GF (q). It is well known that q = 2k for some
integer k ≥ 1. The multiplicative group of GF (q) will be denoted by GF (q)∗.
The group GF (q)∗ is cyclic and a primitive element of GF (q)∗ is a generator
of GF (q)∗. An irreducible polynomial f(x) ∈ GF (2)[x] of degree n is primi-
tive over GF (2) if it is the minimum polynomial of some primitive element of
GF (2n). Recall that the trace function Trnk from the field GF (2n) onto the

subfield GF (2k) is defined by Trnk (x) = x + x2
k

+ x2
2k

+ · · · + x2
(t−1)k

where
t = n/k. For the properties of the trace function, see [7]. Consider two binary
m-sequences u(t) and v(t), (t = 0, 1, · · · ,) of period 2n − 1. Let α be a prim-
itive element of the finite field GF (2n). We may assume that u(t) = Trn1 (αt)
and v(t) = u(dt)(1 ≤ d ≤ 2n − 2) where Trn1 (x) : GF (2n) → GF (2) is the
well-known trace function and d is a decimation, that is, an integer satis-
fying gcd(d, 2n − 1) = 1. The cross-correlation function Cd(τ) between the
binary sequences u(t) and v(t) = u(dt)(t = 0, 1, · · · , 2n − 2) is defined for
τ = 0, 1, · · · , 2n − 2 and given by
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Cd(τ) =

2n−2∑
t=0

(−1)u(t+τ)+v(t)

=

2n−2∑
t=0

(−1)Tr
n
1 (αt+τ+αdt).

One of important problems in the theory of sequences is to determine the
values and the number of occurrences of each value taken on by the cross-
correlation Cd(τ). Several decimations leading to three and four-valued corre-
lation function are known.

If d is not a power of two, then the cross-correlation function takes on at
least three values [11].

The well known four-valued cases are:
(4a) d = 2n/2+1 − 1, with n ≡ 0 (mod 4),
(4b) d = (2n/2 + 1)(2n/4 − 1) + 2, with n ≡ 0 (mod 4),

(4c) d =
∑n/2
i=0 2im, with n ≡ 0 (mod 4) , 0 < m < n, gcd(m,n) = 1,

(4d) d = 2k−1

2s−1 (22k + 2s+1 − 2k+1 − 1), n = 2k, 2s|k,

(4e) d = (p
2k+1
2 )2, with n = 4k and p an odd prime.

(4a) and (4b) were proved by Niho [8], (4c) was proved by Dobbertin [1] and
(4d) was proved by Helleseth and Rosendahl [3], and Rosendahl [9]. (4e) was
proved by Seo et al. [10] and Luo [6]. In 2007, Helleseth et al. [2] proposed a
d which has at most four-valued cross-correlation functions.

In this paper, we provide a family of decimations which lead to a four-valued

cross-correlation. The decimations d are as follows: d = 2k−1

2s−1 (2k(i+1) − 2ki +

2s+1 − 2k − 1) where n = 2k and s is an integer such that 2s divides k, and i
is odd. When i = 1 this is equal to (4d).

2. Preliminaries

In this section we introduce some basic results and methods in order to com-
pletely determine the cross-correlations of the proposed four-valued sequence
family. Let n = 2k, where k is an even integer and q = 2k. For x ∈ GF (q2) we
define x = xq. Then

(a) x+ y = x+ y and xy = x y for all x, y ∈ GF (q2) and
(b) x+ x ∈ GF (q) and xx ∈ GF (q) for all x ∈ GF (q2).
Define the unit circle of GF (q2) by S = {x ∈ GF (q2) : xx = 1}. Then S is

the group of (q+ 1)-th roots of unity in GF (q2) and is a subgroup of GF (q2)∗.

The following theorem is useful in finding the complete distribution of the
values of Cd(τ).
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Theorem 2.1 [8, 11] For some integer d(1 ≤ d ≤ 2n − 2), we have
(a) Cd(τ) is a real number,

(b)
∑2n−2
τ=0 (Cd(τ) + 1) = 2n,

(c)
∑2n−2
τ=0 (Cd(τ) + 1)2 = 22n,

(d)
∑2n−2
τ=0 (Cd(τ) + 1)3 = 22nb,

where b is the number of x ∈ GF (q2) such that

(x+ 1)d = xd + 1.

Niho [8] and Rosendahl [9] proved the following two theorems respectively.

Theorem 2.2 Let n = 2k and y ∈ GF (2n)∗. The equation

x2
s+1 + yx2

s

+ yx+ 1 = 0

has either 0, 1, 2 or 2gcd(s,k) + 1 solutions x in S.

Theorem 2.3 Let n = 2k and assume that d ≡ 1(mod 2k − 1). And let
Cd(τ) + 1 = ∆d(τ). Then ∆d(τ) = 2k(N(y)− 1) where N(y) is the number of

x ∈ {x ∈ GF (2n) : x2
k+1 = 1} such that

xd + yx+ yx−1 + x−d = 0

and y ∈ GF (2n)∗.

Lemma 2.4 Let k be even. And let s be an integer such that 2s divides k.
Then gcd(2k + 1, 2s − 1) = 1.

Proof. Since s/gcd(k, s) = 1 is odd, gcd(2k + 1, 2s − 1) = 1.

Lemma 2.5 Let k be even. And let s be an integer such that 2s divides k.
Then gcd(2k + 1, 2s + 1) = 1.

Proof. Since 2s|k, let k = 2as for some integer a. From 2k + 1 = 2k−s(2s +
1) − 2k−s + 1, gcd(2k + 1, 2s + 1) = gcd(2k−s − 1, 2s + 1). Since k−s

gcd(k−s,s) =
k−s

gcd(k,s) = k−s
s = 2as−s

s = 2a − 1 is odd, gcd(2k−s − 1, 2s + 1) = 1. Hence

gcd(2k + 1, 2s + 1) = 1.

3. Results for four-valued cross-correlation functions

In this section, we show a family of four-valued cross-correlation functions.

Lemma 3.1 Let n = 2k and s be an integer such that 2s divides k. And

let d = 2k−1

2s−1 (2k(i+1) − 2ki + 2s+1 − 2k − 1), where i is odd. Then

(a) d ≡ 1 (mod 2k − 1),

(b) d ≡ 2ki−2s

2s−1 (mod 2k + 1),

(c) gcd(d, 2n − 1) = 1.
Proof. (a) Clearly d ≡ 1 (mod 2k − 1).
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(b) d = 2k−1{ 2
k−2s

2s−1 (2k − 1) + 2k + 1} ≡ 2k−2s

2s−1 (mod 2k + 1).

(c) By (a) and (b), we have gcd(d, 2n−1) = gcd(d, 2k+1) = gcd( 2ki−2s

2s−1 , 2
k+

1). Since gcd(2s−1, 2k + 1) = 1 by Lemma 2.4, gcd( 2ki−2s

2s−1 , 2
k + 1) = gcd(2ki−

2s, 2k + 1). Since 2ki − 2s ≡ −1 − 2s(mod 2k + 1), by Lemma 2.5 gcd(2ki −
2s, 2k + 1) = gcd(2k + 1, 2s + 1) = 1. Hence gcd(d, 2n − 1) = 1.

Lemma 3.2 Let q = 2k and d ≡ 1(mod q − 1). Then x ∈ GF (q2) \ {0, 1} is
a solution to

(x+ 1)d = xd + 1 (1)

if and only if xd−1 = (x+ 1)d−1 = 1 or xd−q = (x+ 1)d−q = 1.
Proof. Assume that x ∈ GF (q2) \ {0, 1} is a solution to Eq.(1). Since

(x+ 1)d = xd + 1, (x+ 1)d = (xq + 1)d = (x+ 1)qd = {(x+ 1)d}q = (xd + 1)q =
xd + 1. Thus (xx+ x+ x+ 1)d = (xx)d + xd + xd + 1. Since xx ∈ GF (q) and
x+x ∈ GF (q), xx+x+x+1 ∈ GF (q) and thus (xx+x+x+1)d = xx+x+x+1.
Therefore we have xx+ x+ x+ 1 = xx+ xd + xd + 1 i.e.,

x+ x = xd + xd. (2)

Multiplying xd−q−1 to both sides of Eq.(2), we obtain xd−q+xd−1 = x2d−q−1+
xqd+d−q−1. Since d ≡ 1(mod q − 1), there exists a positive integer s such that
d − 1 = (q − 1)s. Since xqd+d−q−1 = x(q+1)(d−1) = x(q+1)(q−1)s = 1, we have
x2d−q−1 − xd−q − xd−1 + 1 = (xd−1 − 1)(xd−q − 1) = 0. Thus we have xd = x
or xd = xq.

(i) xd = x: Since (x + 1)d = xd + 1 = x + 1 and x ∈ GF (q2) \ {0, 1},
(x+ 1)d−1 = 1.

(ii) xd = xq: Since (x + 1)d = x + 1 = (x + 1)q and x ∈ GF (q2) \ {0, 1},
(x+ 1)d−q = 1.

Conversely, let xd−1 = (x + 1)d−1 = 1. Then (x + 1)d = x + 1 and xd = x,
and thus (x+1)d = x+1 = xd+1. Therefore x is a solution to Eq.(1). And let
xd−q = (x+ 1)d−q = 1. Then (x+ 1)d = (x+ 1)q = xq + 1 = xd + 1. Therefore
x is a solution to Eq.(1).

Lemma 3.3 Let q = 2k and d ≡ 1(mod q − 1). And let x ∈ GF (q2)∗ be a
solution to (x+ 1)d = xd + 1. Then (x+1

x+1 )d−1 = 1 or (x+1
x+1 )d+1 = 1.

Proof. Since every element of GF (q) is a solution to (x+1)d = xd+1, we may
assume that x 6= 1. By Lemma 3.2, xd = x or xd = x. Since (x+ 1)d = xd + 1,
(x + 1)d = xd + 1. From (x + 1)d(x + 1)d = (xd + 1)(xd + 1), we obtain
(xx + x + x + 1)d = (xx)d + xd + xd + 1. Since xx ∈ GF (q) and x + x ∈
GF (q), xx+ x+ x+ 1 ∈ GF (q) and thus (xx+ x+ x+ 1)d = xx+ x+ x+ 1.
Therefore we have

x+ x = xd + xd. (3)
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(i) xd = x : Since xd = x, we have (x+1
x+1 )d = xd+1

xd+1
= x+1

x+1 and thus

(x+1
x+1 )d−1 = 1.

(ii) xd = x : Since xd = x, we have (x+1
x+1 )d = xd+1

xd+1
= x+1

x+1 and thus

(x+1
x+1 )d+1 = 1.

Theorem 3.4 Assume that d ≡ 1(mod 2k − 1). If gcd(d − 1, 2k + 1) =
gcd(d+ 1, 2k + 1) = 1, then the equation

(x+ 1)d = xd + 1 (4)

has exactly 2k solutions in GF (2n).
Proof. Since d ≡ 1 (mod 2k − 1), every x ∈ GF (2k) is a solution to Eq.(4).

So we may assume that x( 6= 0, 1) is a solution to Eq.(4). Since x is a solution
to Eq.(4), xd = x or xd = x by Lemma 3.2. Let xd = x. By Lemma 3.3,
(x+1
x+1 )d−1 = 1. And let xd = x. By Lemma 3.3 (x+1

x+1 )d+1 = 1. Since gcd(d −
1, 2k + 1) = gcd(d+ 1, 2k + 1) = 1, x+1

x+1 = 1. Thus x = x. Hence x ∈ GF (2k).

Lemma 3.5 Let n = 2k and s be an integer such that 2s divides k. And let

d =
2k−1

2s − 1
(2k(i+1) − 2ki + 2s+1 − 2k − 1),

where i is odd. Then
(a) gcd(d+ 1, 2k + 1) = 1.
(b) gcd(d− 1, 2k + 1) = 1.

Proof. (a) Since gcd(2s − 1, 2k + 1) = 1 by Lemma 2.4, gcd(d+ 1, 2k + 1) =
gcd((2s−1)(d+1), 2k+1). From (2s−1)(d+1) ≡ 2k−1(2k(i+1)−2ki+2s+1−2k−
1)+(2s−1) ≡ −2(mod 2k+1), gcd((2s−1)(d+1), 2k+1) = gcd(2, 2k+1) = 1.
Hence gcd(d+ 1, 2k + 1) = 1.
(b) Since gcd(2s − 1, 2k + 1) = 1 by Lemma 2.4, gcd(d− 1, 2k + 1) = gcd((2s −
1)(d−1), 2k+1). From (2s−1)(d−1) ≡ 2k−1(2k(i+1)−2ki+2s+1−2k−1)+(2s−
1) ≡ −2s+1(mod 2k + 1), gcd((2s − 1)(d− 1), 2k + 1) = gcd(2s+1, 2k + 1) = 1,
Hence gcd(d− 1, 2k + 1) = 1.

By Lemma 3.1, d ≡ 1(mod 2k − 1). With Theorem 3.4 and Lemma 3.5, we
obtain the following theorem.

Theorem 3.6 Let n = 2k and s be an integer such that 2s divides k. Also

let d = 2k−1

2s−1 (2k(i+1) − 2ki + 2s+1 − 2k − 1), where i is odd. Then the cross-

correlation function Cd(τ) between two m-sequences takes on the following four
values:



534 H.-D. KIM, S.-J. CHO, M.-J. KWON, AND U.-S. CHOI

−1− 2k occurs 22k+s−1−2k+s−1

2s+1 times,

−1 occurs 22k−2k−2s

2s times,

−1 + 2k occurs 22k+s−1−22k−2k+s−1

2s−1 times,

−1 + 2k+s occurs 22k−2k

23s−2s times.

Proof. By Lemma 3.1 d ≡ 1(mod 2k − 1), d ≡ 2ki−2s

2s−1 (mod 2k + 1) and

gcd(d, 2n − 1) = 1. By Theorem 2.3, we obtain the following equation:

x
2ki−2s

2s−1 +yx+yx−1+x−
2ki−2s

2s−1 = 0 (5)

x2
k+1 = 1.

Since gcd(2s−1, 2k+1) = 1 by Lemma 2.4, the number of solutions to Eq.(5)
is the same as the number of solutions to the following equation replacing x by
x2

s−1 in Eq.(5). Then we get the following:

yx2
s−1 +x2

ki−2s +yx1−2s +x−2ki+2s = 0. (6)

Multiplying x2
ki−2s to both sides, we obtain the equivalent equation:

yx2
s−1 +x2(2

ki−2s) +yx2
ki−2s+1+1 +1 = 0. (7)

Since 2k ≡ −1(mod 2k + 1), Eq.(7) is equivalent to the following:

x2(−1−2s) + yx−2 + yx−2s+1

+ 1 = 0. (8)

Thus the number of solutions to Eq.(8) is the same as the number of solutions
to Eq.(9):

x−1−2s +yx−1 +y2
k

x−2s + 1 = 0, (9)

Therefore the number of solutions to Eq.(9) is the same as the number of
solutions to the following Eq.(10):

x2
s+1 + yx2

s

+ y2
k

x+ 1 = 0. (10)

Thus by Theorem 2.2 Cd(τ) is four-valued. By Theorem 2.1 and Theorem
3.4,

2n−2∑
τ=0

(∆d(τ))3 = 22n2k.

As usual, denote by Nj the number of times Eq.(10) has exactly j solutions
in S. Then we have the following:
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N0 +N1 +N2 +N2s+1 = 2n − 1.
−2kN0 + 0 ·N1 + 2kN2 + 2k+sN2s+1 = 2n.
2nN0 + 0 ·N1 + 2nN2 + 2n+2sN2s+1 = 22n.

−2n+kN0 + 0 ·N1 + 2n+kN2 + 2n+k+3sN2s+1 = 22n+k.

Solving this system, we obtain the following: N0 = 22k+s−1−2k+s−1

2s+1 , N1 =
22k−2k−2s

2s , N2 = 22k+s−1−22k+2k+s−1

2s−1 , N2s+1 = 22k−2k

23s−2s .

By Theorem 2.3 Cd(τ) ∈ {−1− 2k,−1,−1 + 2k,−1 + 2k+s}. This completes
the proof.

4. Conclusion

In this paper we proposed four-valued cross-correlation functions between
two maximal linear recursive sequences and found the values and the number

of occurrences of each value of Cd(τ) when d = 2k−1

2s−1 (2k(i+1)−2ki+2s+1−2k−1),
where n = 2k and s is an integer such that 2s divides k, and i is odd.
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