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NEW FAMILY OF BINARY SEQUENCES WITH
FOUR-VALUED CROSS-CORRELATION

HaN-Doo Kim, SunG-JiN CHO™, MIN-JEONG KwON, AND UN-SOOK CHOI

ABSTRACT. In this paper, we find the values and the number of occur-
rences of each value of the cross-correlation function Cy(7) when d =

32:11 (2k(+1) _ gkt 4 9541 _ 9k _ 1) where n = 2k, s is an integer such

that 2s divides k, and 7 is odd.

1. Introduction

The design of binary sequences with good correlation properties are impor-
tant for many research areas in communication systems. Finding the cross-
correlation between two maximal length sequences of the same period has been
a meaningful research problem. For the theory of finite fields, maximal length
sequences and sequences in general, we refer to [5]. The finite field with ¢
elements will be denoted by GF(q). It is well known that ¢ = 2* for some
integer k£ > 1. The multiplicative group of GF(q) will be denoted by GF(q)*.
The group GF(g)* is cyclic and a primitive element of GF(q)* is a generator
of GF(q)*. An irreducible polynomial f(z) € GF(2)[x] of degree n is primi-
tive over GF'(2) if it is the minimum polynomial of some primitive element of
GF(2"). Recall that the trace function Tr} from the field GF(2") onto the
subfield GF(2*) is defined by Tr(z) = z + 22" + 27" 4+ 4+ 227" where
t = n/k. For the properties of the trace function, see [7]. Consider two binary
m-sequences u(t) and v(t), (¢t = 0,1,---,) of period 2" — 1. Let « be a prim-
itive element of the finite field GF(2™). We may assume that u(t) = Tr}(at)
and v(t) = u(dt)(1 < d < 2" —2) where Tr}(z) : GF(2") — GF(2) is the
well-known trace function and d is a decimation, that is, an integer satis-
fying gcd(d,2™ — 1) = 1. The cross-correlation function Cg4(7) between the
binary sequences u(t) and v(t) = wu(dt)(t = 0,1,---,2" — 2) is defined for
7=0,1,---,2" — 2 and given by
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One of important problems in the theory of sequences is to determine the
values and the number of occurrences of each value taken on by the cross-
correlation Cy(7). Several decimations leading to three and four-valued corre-
lation function are known.

If d is not a power of two, then the cross-correlation function takes on at
least three values [11].

The well known four-valued cases are:

(4a) d =2"/2+1 1 withn =0 (mod 4),
= (2% + 1)(2"/4 1)+ 2, with n =0 (mod 4),
4c d Z”/Z 2im withn =0 (mod4),0<m <n, gedim,n) =1,

2k 1

(4b
(
(4d) d = Z— (2% 4 25t — 2R F1 1) n = 2k, 2s]k,
(4
(4

\./\-/v

~

e ( 2+ )2, with n = 4k and p an odd prime.
a) and (4b) were proved by Niho [8], (4c) was proved by Dobbertin [1] and
(4d) was proved by Helleseth and Rosendahl [3], and Rosendahl [9]. (4e) was
proved by Seo et al. [10] and Luo [6]. In 2007, Helleseth et al. [2] proposed a
d which has at most four-valued cross-correlation functions.
In this paper, we provide a family of decimations which leka(f} to a four-valued
ok

cross-correlation. The decimations d are as follows: d = Z— (2~(+1) — gkt 4

25+l 2k _ 1) where n = 2k and s is an integer such that 2s divides k, and i
is odd. When 4 = 1 this is equal to (4d).

2. Preliminaries

In this section we introduce some basic results and methods in order to com-
pletely determine the cross-correlations of the proposed four-valued sequence
family. Let n = 2k, where k is an even integer and q = 2. For x € GF(¢?) we
define T = z4%. Then

(a)z+y=T+yand Ty =7 ¥ for all 7,y € GF(¢?) and

(b) x +7 € GF(q) and 2T € GF(q) for all z € GF(q2 .

Define the unit circle of GF(¢?) by S = {x € GF(¢?) : 27 = 1}. Then S is
the group of (¢ + 1)-th roots of unity in GF(¢?) and is a subgroup of GF(g?)*.

The following theorem is useful in finding the complete distribution of the
values of Cy(7).
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Theorem 2.1 [8, 11] For some integer d(1 < d < 2" — 2), we have
(a) Cq4(T) is a real number,

() 3557 (Calr) +1) = 27,
(¢) 3or—o (Calr) + 1) = 2%",
(d) 220 (Calr) + 1)° = 2",
where b is the number of x € GF(q¢?) such that
(z+ 1) =z +1.
Niho [8] and Rosendahl [9] proved the following two theorems respectively.

Theorem 2.2 Let n = 2k and y € GF(2")*. The equation

22 y:rgs +yr+1=0
has either 0,1, 2 or 29¢4(s:k) 4 1 solutions z in S.

Theorem 2.3 Let n = 2k and assume that d = 1(mod 2 —1). And let
Cy(1) + 1= A4(7). Then Ay(7) = 2¥(N(y) — 1) where N(y) is the number of
z € {x € GF(2"): 22"t = 1} such that

2 +yr+grt 2 1=0
and y € GF(2")*.

Lemma 2.4 Let k be even. And let s be an integer such that 2s divides k.
Then ged(2* +1,25 — 1) = 1.
Proof. Since s/gcd(k,s) = 1 is odd, ged(2F +1,2% — 1) = 1.

Lemma 2.5 Let k£ be even. And let s be an integer such that 2s divides k.
Then ged(2F +1,25 +1) = 1.

Proof. Since 2s|k, let k = 2as for some integer a. From 2% 4 1 = 2F=3(2° +
1) — 285 4 1,ged(2F +1,2° + 1) = ged(28—5 — 1,2° + 1). Since % =
gc];(_ks,s) = k;‘s = 2“‘%5 = 2a — 1 is odd, ged(2¥=% —1,2° +1) = 1. Hence
ged(2F 41,25 +1) = 1.

3. Results for four-valued cross-correlation functions
In this section, we show a family of four-valued cross-correlation functions.

Lemma 3.1 Let n = 2k and s be an integer such that 2s divides k. And
let d = %(2’“(”1) —2ki p 251 _9F _ 1) where 4 is odd. Then
(a) d =1 (mod 2% — 1),

(b) d = 2=2" (mod 2* + 1),

(c) ged(d,2™ — 1) = 1.
Proof. (a) Clearly d =1 (mod 2F — 1).
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(b) d = 26=1{2=2"(2k — 1) 42k 4 1} = 2=2" (mod 2¥ + 1).

(¢) By (a) and (b), we have ged(d, 2" —1) = ged(d, 28 +1) = ged(2%-=2", 2% +
1). Since ged(2° — 1,2 +1) = 1 by Lemma 2.4, gcd(%i:?s 28 +1) = ged(2¥ —
2528 4 1). Since 2¥ — 2% = —1 — 2%(mod 2* + 1), by Lemma 2.5 ged(2* —
25,28 +1) = ged(2* +1,2° + 1) = 1. Hence ged(d,2" — 1) = 1.

Lemma 3.2 Let ¢ = 2¥ and d = 1(mod q — 1). Then x € GF(¢?) \ {0,1} is
a solution to

(z+ 1) =241 (1)

if and only if 297! = (z + 1) ' =1lora? %= (x+1)99=1.

Proof. Assume that * € GF(q?) \ {0,1} is a solution to Eq.(1). Since
(z+1D)?=2¢+1, T+ 1) = (294+1)% = (2 4+1)% = {(z+1)9}9 = (27 +1)7 =
744+ 1. Thus (2Z + 2+ T+ 1)? = (27)? + 2¢ + 7% + 1. Since 27 € GF(q) and
r+7 € GF(q), 2Z+x+7+1 € GF(q) and thus (2Z+2+7+1)¢ = 27 +z+7+1.
Therefore we have 2T+ 2 +Z + 1 =2 + 24 + 7% + 1 i.e.,

r+7 =2+ 7 (2)

Multiplying 4~97! to both sides of Eq.(2), we obtain 299491 = x2d-a-14
x99+td=9=1 Gince d = 1(mod q — 1), there exists a positive integer s such that
d—1=(q—1)s. Since z2td=1=1 = platD)(d=1) — zla+D@=1s = 1 e have
p2d=a=t _gd=a _gd=1 4 1 = (z9=! —1)(2979 — 1) = 0. Thus we have ¢ = z

or x¢ = 4.

(i) 27 = z: Since (z+ 1) = 29+ 1 =z +1 and 2 € GF(¢?) \ {0,1},
(r+1)4"1 =1.

(ii) 2% = 29: Since (x +1)? =T+ 1 = (r+ 1)? and z € GF(¢?) \ {0,1},
(x+1)79 =1.

Conversely, let 297! = (z +1)4~t = 1. Then (z+1)¢ =z + 1 and 2¢ = z,
and thus (z+1)¢ = x+1 = 2%+ 1. Therefore z is a solution to Eq.(1). And let
2979 = (2 4+1)¥9=1. Then (x +1)¢ = (x +1)9 = 29+ 1 = 2% + 1. Therefore
x is a solution to Eq.(1).

Lemma 3.3 Let ¢ = 2F and d = 1(mod ¢ — 1). And let 2 € GF(¢?)* be a
solution to (z +1)* = 2% 4+ 1. Then (£5)4! =1 or (Z5)4! = 1.

Proof. Since every element of GF(q) is a solution to (z+1)% = 2941, we may
assume that = # 1. By Lemma 3.2, 2% = z or 2% = 7. Since (z + 1)¢ = 29 + 1,
@+ 1) =724+ 1. From (z + )47 + 1)? = (2% + 1)(7? + 1), we obtain
(aT+2+7+1)? = (27)% + 2¢ + T 4+ 1. Since 2T € GF(q) and © + T €
GF(q),2Z+x+T+1€ GF(q) and thus (2T + 2+ T+ 1) = 2T + 2+ 7 + 1.
Therefore we have

r+7 =2 +7% (3)
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N opd — . QG —=d _ = z+1\d _ 2%+l _ x4l

(i) ¢ = z : Since 7% = 7, we have (£17)" = 75 = Z7 and thus
(rc 1)d—1 1
1

Sy ed — mo. Qi =d _ z+1yd _ z%41 _ Z+l

ii) ¢ = 2 : Since % = =z, we have (337)" = L7 = 57 and thus

Theorem 3.4 Assume that d = 1(mod 2% — 1). If ged(d — 1,2% + 1) =
ged(d+1,2% 4+ 1) = 1, then the equation

(z+1)?=2¢41 (4)

has exactly 2¥ solutions in GF(2").

Proof. Since d =1 (mod 2% — 1), every x € GF(2*) is a solution to Eq.(4).
So we may assume that x(# 0,1) is a solution to Eq.(4). Since x is a solution
to Eq.(4), 2 = z or ¥ = T by Lemma 3.2. Let 2 = z. By Lemma 3.3,
(£5)%" = 1. And let ¢ = 7. By Lemma 3.3 (Z5)%! = 1. Since ged(d —
1,28 +1) = ged(d + 1,2F + 1) = 1, %—ﬁ =1. Thus ¥ = z. Hence x € GF(2F).

Lemma 3.5 Let n = 2k and s be an integer such that 2s divides k. And let

g 2k—1 (K1) _gki | 9st1 _ ok _ 1)
251 ’
where ¢ is odd. Then
(a) ged(d + 1,28 +1) = 1.
(b) ged(d —1,2F +1) = 1.

Proof. (a) Since ged(2° — 1,2 +1) = 1 by Lemma 2.4, ged(d + 1,28 +1) =

ged((2°—1)(d41),25+1). From (25 —1)(d+1) = 2F~1(2F@+D) _gki y 9st+1_ok
1)+ (25 —1) = —2(mod 28 +1), ged((2° —1)(d+1),25 +1) = ged(2,2F +1) = 1.
Hence ged(d +1,2F +1) = 1.
(b) Since ged(2° —1,2F 4+ 1) = 1 by Lemma 2.4, ged(d — 1,2% + 1) = ged((2° —
1)(d—1),2541). From (25 —1)(d—1) = 2k 1(2k@+1) _oki f s+l _ok 1) (25—
1) = =2t (mod 2% + 1), ged((2° — 1)(d — 1),2F + 1) = ged(2511,2F +1) = 1,
Hence ged(d — 1,28 +1) = 1.

By Lemma 3.1, d = 1(mod 2% — 1). With Theorem 3.4 and Lemma 3.5, we
obtain the following theorem.

Theorem 3.6 Let n = 2k and s be an integer such that 2s divides k. Also
let d = %(2’“(”1) — 2kt 4 2st1 _ 2% _ 1) where i is odd. Then the cross-
correlation function Cy(7) between two m-sequences takes on the following four
values:
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92k+s—1_gk+s—1

—1—-2%  occurs 71 times,
-1 occurs 2%*22# times,
—14+2F  occurs 2%“71;32_2“871 times,
—1 42k occurs % times.
Proof. By Lemma 3.1 d = 1(mod 2 — 1),d = %(mod 2% + 1) and
ged(d, 2™ — 1) = 1. By Theorem 2.3, we obtain the following equation:
21@1'725 1 72ki72s
1 fyr+yr o -1 =0 (5)
22+l =1,

Since ged(2°—1,2F41) = 1 by Lemma 2.4, the number of solutions to Eq.(5)

is the same as the number of solutions to the following equation replacing = by

22"~ in Eq.(5). Then we get the following:

g T Y g Y 2, (6)

Multiplying 22"'=2" to both sides, we obtain the equivalent equation:

yl‘2s_1 +x2(2ki_25) +§x2ki_23+1+1 t1=o. (7)
Since 2F = —1(mod 2* + 1), Eq.(7) is equivalent to the following:

221720 2 42 p 1 =0 (8)

Thus the number of solutions to Eq.(8) is the same as the number of solutions
to Eq.(9):
7 oyt +y2k:17*25 +1=0, (9)

Therefore the number of solutions to Eq.(9) is the same as the number of
solutions to the following Eq.(10):

2 pgya? +y2k:v +1=0. (10)

Thus by Theorem 2.2 Cy(7) is four-valued. By Theorem 2.1 and Theorem
3.4,

272
> (Aa(r))? =272,
7=0
As usual, denote by N; the number of times Eq.(10) has exactly j solutions
in S. Then we have the following:
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No + N1+ Na + Nosyg = 2" -1
—2FNg +0- Ny + 2F Ny + 25 Ny = 2n
2"No +0- Ny + 2" Ny + 2725 Noo = 22
_2n+kN0 4+0- Nl + 2n+kN2 + 2n+k+33N25+1 — 22n+k.
Solving this system, we obtain the following: Ny = %, Ny =
2k _ok _os 2k+s—1_ o2k | gk+s—1 2k _ ok
22#’ N2 =2 252,1+2 3 N25+1 = %

By Theorem 2.3 Cy(7) € {—1—2% —1,—1+2% —1+42*+s}. This completes

the proof.

4. Conclusion

In this paper we proposed four-valued cross-correlation functions between

two maximal linear recursive sequences and found the values and the number
k—1 . .

of occurrences of each value of Cy(7) when d = Z— (2k(+1 —2kijgs+1l_ok_1),

where n = 2k and s is an integer such that 2s divides k, and ¢ is odd.
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