참고문헌
- T.B. Benjamin, J.L. Bona, J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philosophical Transactions of the Royal Society of London. 1220 (1972), no. 272, 47-78.
- D.J.Korteweg, G.de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philosophical Magazine. (1895), no. 39, 422-443.
- M.A.Raupp, Galerkin methods applied to the Benjamin-Bona-Mahony equation, Boletim da Sociedade Brazilian Mathematical. 1 (1975), no. 6, 65-77.
- L.Wahlbin, Error estimates for a Galerkin mehtod for a class of model equations for long waves, Numerische Mathematik. 4 (1975), no. 23, 289-303.
- R.E.Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equation, SIAM Journal on Numerical Analysis. 5 (1978), no. 15, 1125-1150.
- D.N.Arnold,J.Douglas Jr.,and V.Thomee, Superconvergence of finite element approxi-mation to the solution of a Sobolev equation in a single space variable, Mathematics of Computation. 153 (1981), no. 36, 737-743.
- K.Omrani, The convergence of the fully discrete Galerkin approximations for the Benjamin-Bona-Mahony(BBM)equation, Appl Math Comput. (2006), no. 180, 614-621.
- R.Kannan and S.K.Chung, Finite difference approximate solutions for the two-dimensional Burgers system, Comput Math Appl. (2002), no. 44, 193-200.
- T.Achouri, N.Khiari and K.Omrani, On the convergence of difference schemes for the Benjamin-Bona-Mahony(BBM)equation, Appl Math Comput. (2006), no. 182, 999-1005.
- K.Omrani and M.Ayadi, Finite difference discretization of the Benjamin-Bona-Mahony-Burgers(BBMB)equation, Numer Meth Part Differ Equat. (2008), no. 24, 239-248.
- D.Kaya, A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation, Appl Math Comput. (2004), no. 149, 833-841.
- K.Al-Khaled, S.Momani, and A.Alawneh, Approximate wave solutions for generalized Benjamin-Bona-Mahony-Burgers equations, Appl Math Comput. (2005), no. 171, 281-292.
- T.Ozis, A.Esen, S.Kutluay, Numerical solution of Burgers equation by quadratic B-spline finite element, Appl Math Comput.(2005), no. 165, 237-249.
- E.N.Aksan, Quadratic B-spline finite element method for numerical solution of the Burgers equation, Appl Math Comput. (2006), no. 174, 884-896.
- M. Zarebnia, R. Parvaz, Cubic B-spline collocation method for numerical solution of the Benjamin-Bona-Mahony-Burgers equation, International journal of mathematical sciences. 4 (2013), no. 7, 34-37.
- P.M.Prenter, Splines and Variational Methods, Wiley, New York, 1975.
피인용 문헌
- Solution BBM-Burger Equation via Quartic Trigonometric B-spline Approach vol.1879, pp.2, 2013, https://doi.org/10.1088/1742-6596/1879/2/022109
- Theoretical and computational structures on solitary wave solutions of Benjamin Bona Mahony-Burgers equation vol.14, pp.2, 2013, https://doi.org/10.32513/tmj/19322008120