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NECESSARY CONDITIONS FOR OPTIMAL BOUNDARY
CONTROL PROBLEM GOVERNED BY SOME CHEMOTAXIS
EQUATIONS

SANG-UK Ryu

ABSTRACT. This paper is concerned with the necessary conditions of the
optimal boundary control for some chemotaxis equations. We obtain the
existence and the necessary conditions of the optimal boundary control
in the space (H'(0,T))2. Moreover, under some assumptions, we show
the uniqueness of the optimal control.

1. Introduction

In this paper we consider the following optimal boundary control problem
(P) minimize J(uq,us2)

with the cost functional J(uq,us) of the form

T
J(ur,uz) = / Iy (ur, uz) = yall 72 (0 1) dt
0

+ ol om) + lu2lner},  w, u2 € HY(0,T),
where y = y(u1,uz2) is governed by the chemotaxis equations

Oy _ 0%y b@( 3p)

ot —Gw ~ Y5 Z/% in (0,L) x (0,71,

op  9p .

5% d@ + fy—hp in (0,L) x (0,77, (1.1)
W0 o 00—, P

O (Oat) - O (Lvt) - 07 O (O7t) - ul(t)a oz (Lvt) - UQ(t) on (O,TL

y(l‘, 0) = y0($)7 p(xv 0) = po(.’ll) in (07 L)
Here, (0,L) is a bounded interval in R. a, b, d, f, h > 0 are given positive
numbers. y = y(z,t) describes the cell concentration in (0, L) at time ¢, and
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p = p(z,t) the chemoattractant concentration in (0, L) at time ¢. wuq(¢) and
uz(t) are the control functions. We refer to [2, 3, 5, 6] and the references for
(L.1).

Many papers have already been published to study the optimal control prob-
lems for nonlinear parabolic equations(see [1, 3, 6, 7]). In [7], Ryu studied the
existence of the optimal boundary control for the chemotaxis diffusion equa-
tions when the boundary control is given in the space H?(0,T). However, in
this paper we obtain the existence and the necessary conditions of the optimal
boundary control in the space (H'(0,7))?. Moreover, under some assumptions,
we show the uniqueness of the optimal control.

2. Mathematical setting

In this section, we recall the existence and uniqueness of a local solution for
(1.1)([5, 7]). To derive the existence of solutions for (1.1), we reduce (1.1) to a
homogeneous problem. First we construct a lifting function for the boundary
conditions,

2L — 2
oolat) =)D T
Here, u; € HE(0,T) = {u € H*(0,T) : u(0) = 0}(i = 1,2) and U = (Z;)
Obviously
‘82¢U x,t)
ox?

Let us set w(z,t) = p(x,t) — ¢y (z,t); then the system (1.1) is equivalent to
the one:

‘ < C(Jus (1)) + |uz(t)]), Vo € (0,L), Yt € [0,T] (i = 0,1,2). (2.1)

oy 0%y 0 1 O(w+ dy)

E = a@ - b% (yiax ) n (O,L) X (071—‘]7

O O b bt gu(at)  in (0,L) x (0,7] (2.2)
ot - D2 Yy —hw gu (T m ) ) ) .
8y 6y Bw _ 67111 _

(:E,O) = yo(x ), w(x,0) = wo in (0,L).

Here, wy = po(z) and gy (z,t) = da;fU hoy — ‘%U.

Now, we show the existence and umquenebb of a local solution for (2.2) as in
[5,7]. Let Ay = a5~ 2% 4aand Ay = —dg—= & — +h with the same domain D(4;) =
H2(0,L) = {z € H?(0,L); 22(0) = g;( ) =0} (i = 1,2). Then, A; are two
positive definite self-adjoint operators in L?(0, L). We set three product Hilbert
spaces VC H=H C V' asV=H'0,L)x H2(0,L), H = L?(0,L) x H'(0, L),
and V' = (H(0,L))" x L?(0,L). Let Uy,q be a closed bounded convex subset
in H: x H{.
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Then, (2.2) is formulated as an abstract equation
dy

E—FAY:FU(Y)—FGU(IS), 0<t<T, (2.3)
Y(0) = Yo
in the space V'. Here, a linear isomorphism A = (%1 /(1) is a bounded
2

operator from V to V', and the part of A in H is a positive definite self-adjoint
operator in H. Fy(-) : V — V' is the mapping
a _b@< 3(w+¢U)> 0
FU(Y):<y 2 \Y™"0 ) and GU(t):< )
fy gu (z,t)

Yy is defined by Yy = (5(;)

Moreover, for U € U,q, Fy(+) is a given continuous function from V to V'
satisfying the following conditions([7]):

For each n > 0, there exists an increasing continuous function p,, : [0, 00) —
[0,00) such that for all Y, Y €V

[Eu(Y)lv: < allYlly + py (1Y [3), a.e. (0,T); (£1)

1Fo (V) = Fu(V) v < nllY =Yy
P + 1Yy + D (Pl + 1Y 1Y = Yl ace. (0,7).  (£i)
In addition, there exists a constant C' > 0 such that for all Y € V, ﬁ,U € Uug
|F5(Y) = Fg(Y) |l < C|U = T||Y |lu, ace. (0,T). (£.iii)

Since U € Uyq, we see that Gy (-) € L?(0,T;V’). Then, we obtain the
following result([6]).

Theorem 2.1. If Yy € H, there exists a unique weak solution
Y € H'(0,5;V")nC([0,S];H) N L0, S;V)
to (2.3), the number S € (0,77 is determined by the norm |Gyl 20,1y and
1Yo l[2-
3. Necessary conditions for the optimal control

Let S > 0 be such that for each U € Ugq, (2.3) has a unique weak solution
Y(U) € H*0,5;V") nC([0,S];H) N L?(0,S;V). Thus, the problem (P) is
obviously formulated as follows:

(P) minimize J(U),

where

S
J(U) = / IDY (1) = YallZdt + 11U s 002 U € Uoa:
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Here, D(?) = (¥) and Yy = (%) is a fixed element of L*(0,S;H) with yq €

L?(0,8; L%(0,L)). v is a positive constant.

Lemma 3.1. Let U, = (") — U = (;;}) weakly in (H'(0,5))*. Then we
have

Gu, (t) = Gu(t) weakly in L*(0,S;V"). (3.1)
Proof. For all ¢ € L?(0,5; H2(0, L)),

/OS <% + héu w> dt (3.2)

L2(0,L),H?(0,L)

(0 ) 7

N (dU2n(t) + huw(t))§’w>

dt L2(0,L),H2(0,L)

s
B dun,(t) z(2L — z)
_/0 ( dt + huln(t>)< 2L ,w>L2(0,L),H2(O,L)dt

s 2
duay, (t) x
* /0 ( dt + hu%(t)) <ﬁ’ w>L2(0,L),H2(0,L)dt'

2

Since

s _ 2 S _
/ ‘<m(2L x) ’ 1/}> ‘ g < / H z(2L — x) ‘
0 2L L2(0,L),H2(0,L) 0 2L L2(0,L

S
oA|m@m@ﬁ<w

S\, g2 2
—, dt < o0,
/o ‘<2L w>L2(O,L),H2(O,L)’ >

z(2L—1x) w> <ﬁ >
2L T 20,0, 52(0,0)" \2E7 T/ L2(0,0),H2(0,1)

Since U,, — U weakly in (H'(0,5))?, we have

)||¢||§{2(0,L)dt

IN

and

we know that < e L*0,9).

S rd(upn (t) — ui(t)) x(2L — x)
/o ( : dt : + A(uan(t) - ul(t)))< 2L 7w>L2(O,L),H2(O,L)dt —0
and
5 (d(ugn(t) — us(t)) a?
/0 ( : dt -  hluan(t) = u2(t))) <ﬁ’w>L2(o,L),H2(0,L)dt —0

as n — oo. Therefore, we obtain from (3.2) that

/Os <M + h(¢u, — ¢U)’¢> di 0

ot L2(0,L),H?(0,L)
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as n — oo. Furthermore, since U,, — U strongly in (L%(0,.5))?([4]), we have

S 92 _
/ <5 (¢u, . ¢U),¢> &t
0 ox L2(0,L),H2(0,L)

< CHUn — U”%LZ(O,S))Z — 0.
Hence, we obtain (3.1). O

Theorem 3.2. There exists an optimal control U € U,q for (P) such that
J(U) = min J(U).
UclUqyq

Proof. By using Lemma 3.1, we obtain the existence of the optimal control
U € (H'(0,S))2. The proof is similar to that of [7]. O

To derive the differentiability of Y (U) with respect to the control U, we
note that the mapping Fy(-) : ¥V — V' must be Fréchet differentiable with the
derivative

az — b2 (z wa’”) - b@( %>
F&(Y)Z:( 1 Bz \ 1 ox oz \Y oz )7
[z
where Y = (Y), Z = (2) € V. Then, we have the following estimates([8]);
For each 1 > 0, there exists a constant C;, > 0 such that for Y, Z, P ¢ V
(FG(Y)Z, P)yr vl

< { nlZ|vlIPlly + Co(llY lv + DIIZ|[# Pllv, a-e. (0,5),

3.3
D ZIVIPI + CollY v + DIZIv|Pl. ac. (0.9). (3:3)

In addition, there exists a constant C' > 0 such that for }7, Y. Z eV, (7, U €Uy
(FG(Y)Z = FG(Y)Z, P)yy| < CIY =Y x| ZIv|[Pllv, ae. (0,5), (3.4)

CIU ~ T Z [ Pllv. ace. (0,5),

z (3.5)
CIU = UNZ|v||Pl3, a.e. (0,S).

(FL(Y)Z — BL(Y)Z, Phyy| < {

Proposition 3.3. The mapping U — Y (U) from Uyq into H(0,S;V') N
L?(0,8;V) is differentiable in the sense
YU+ hV)-Y(U)
h
as h — 0, where U,V € Uuyq and U + hV € U,q. Moreover, Z = Y'(U)V
satisfies the linear equation

Z—f +AZ —FL,(Y(U)Z=By(Y(U)+Gv(t), 0<t<S8, (3.6

Z(0) =0,

— Z in H'(0,8;V)NL*0,8;V)
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_p 2 (y22v
where BV(Y(U)) = ( e (5 o= )) and ¢V = 'Ul(t)w—k{&(t)%y V= (5;)

Proof. Let U,V € Uyqg and 0 < h < 1. Let Y}, =Y (Up) and Y = Y (U) be the
solutions of (2.3) corresponding to U, = U + hV and U, respectively.

Step 1. Yj, — Y strongly in C([0,S];H) as h — 0. Let ¥ = Y, — Y. Then
Y satisfies the equation

O+ AV = (Fu, (Vi) — F, (V) + (Fo, (V) — Fo(¥)  (3)
+Gp, (t) = Gu(t), 0<t <8,
Y (0) = 0.

From (f.iii) and (2.1), we have
1Fu, (V) = Fu(Y)llv < CAIV (@)Y (1)l (3-8)

and
dv(t
G () ~ Go®llv = law e < (vl + [ 22)). 39)
Taking the scalar product with ¥ to (3.7) and using (£.ii), (3.8), (3.9), we obtain

1d - 5,
3 IV Ol + S IY @IS

2 dt
< (V@)1 + 1Y @)1} + DAY B+ 1Y ORI 011,
+CRA(|Y ()3, + 1)(|V(t)\2 N ’%ﬁt)r)’

where /i : [0,00) — [0, 00) are some increasing continuous function.
Using Gronwall’s inequality, we have

1Y @)15 < CRAIV Ok 0,52 (Y @)1 (0,5:20) + 1)
for all t € [0, S]. Hence Y}, — Y strongly in C([0,S];H) as h — 0.

Step 2. Y’L;Y converges strongly to the unique solution Z of (3.6) in
HY(0,8;V)NL*0,5;V) as h — 0. Let W = X=X — 7 satisfies

WV aw - (FU(Yh) - oY) _ F{](Y)Z) (3.10)

dt
_ (FUh (Ya) — Fu(Ya)
h

—BV(Y)), 0<t<S§,
W (0) = 0.
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By direct calculation, we have

HFU(Yh) — Fy(Y))
h

< H/:F;xwe(m—m)

—FYZH
Loz
}/h_Y

dO—F{](Y)Z’V

1 1
SHA1%W+““‘YWWMM+HA“%W+“”‘Y”‘%“W4b
— I + .

Then, From (3.3) and (3.4), we obtain
I <l Wiy + Cy(IYally + 1Y Iy + DIW % (3.11)
and
I < CYn =Yl Zlv- (3.12)

Moreover, since

H%((yh B )%)H (H(0,L))’

8
< (yh_ %)’¢>(H1(O,L))’,H1(O,L)

|WHH1(0L)
¢
Al =slzon |G|, - o W0 }
nwmw> Le=(0,L)
<Cllyn = yllz2(0,1);
it is seen that
Fy, (Yn) — Fy(Y;
| Pl 2@ gy )| <civn -yl (13)

Taking the scalar product of the equation of (3.10) with W and using (3.11),
(3.12), and (3.13) we have

S SIWOIR,+ 2IWOIR < CAYA@IR + 1Y @ + DIW B,
+CUZOI} + DIV - YOl

From Gronwall’s inequality, we obtain

t
W ()17 + 5/0 W ()lI%ds < ClIYR(t) = Y (D7 0,590 (121 720,5:0) +1)-

Since Y, — Y strongly in L>°(0, .S;H), it follows that % is strongly conver-
gent to Z in H*(0,5;V')NC([0,S];H) N L*(0,S;V). O
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Theorem 3.4. Let U be an optimal control of (P) and let Y € L*(0,5;V) N
C([0,S);H) N HY(0,S;V") be the optimal state, that is Y is the solution to
(2.3) with respect to the control U. Then, there exists a unique solution P €
L2(0,8;V)ncC([0,S];H) N HY(0,S;V") to the linear problem

- CZ—];JrAP—F'ﬁ(?)*P:D?—Yd, 0<t<S§, (3.14)
P(S)=0

in V'. Moreover, U satisfies
S
/ <P, Bv_ﬁ(?)+GV_U(t)>V,y/dt+’y<ﬁ, V*U>(H1(075))2 >0 forall VelUy.
0

Proof. Since J is Gateaux differentiable at U and U, is convex, it is seen that
JO)V-U)>0 for all V € Uyq.

By direct calculation, we obtain
s
J/<U)(V — U) = / <DY — Yd7DZ>H’Hdt + ’7<U, V — U>(H1(O,S))2-
0

While,
S o S o
/ (DY = Yy, DZ) pdt :/ (DY — Yy, Z)yr pdt
0 0
S dP B
= | (= + AP~ F(Y)"P.Z)y it
0
dz

S

S
:A<Rahﬁm+awﬁ@wyﬁ

with Z = Y’(U)(V — U). Hence, we obtain

S
/ (P, BV_U(?)""‘GV_U(t»V#V’dt+'7<U7 V_U>(H1(O,S))2 >0 forall VelUyy.
0
(Il

4. Uniqueness of the optimal control

In this section we obtain the uniqueness of the optimal control for (P).
Suppose there exist two optimal controls Uy = (1!11), Uy = (%12) € Upq for (P)

u21 uU22
Lemma 4.1. Let Y7 and Yy be the solutions of (2.3) with respect to Uy and
Us, respectively. Then, we have

1V1(6) — Ya(t) 3o 0,590y < CUHUL(E) = VD) 11 .02
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Proof. Let Y7 and Y3 be the solutions of (2.3) with respect to U; and Us,
respectively. Then Y = Y] — Y5 satisfies the equation

Dy ay - (Fu, (Y1) = Fu, (Y2)) + (Fu, (Y2) — Fu,(Y2)) (4.1)

" + Gu, (t) — Gu,(t), 0 <t <8S,
Y (0) =0.
From (2.1) and (f.ii), we have
[ Fu, (Y2) = Fu, (Y2)|lvr < ClUL(E) = U2(2)][[ Yzl (4.2)

and

dUy(t)  dUs(t) D

1Go, () = Gua v < (1010 - La(0)] + | == = =2

(4.3)

Taking the scalar product with ¥ to (4.1) and using (£.ii), (4.2), (4.3), we obtain
that

S SIT @B+ IV}
< (W + Y01 + Da(¥ O + 03170l

+C’(||Y2(t)||§i+1)<|U1(t)fUQ(t)‘er %t(t) B %t(t)’g),

where i : [0,00) — [0, 00) are some increasing continuous function.
Using Gronwall’s inequality, we obtain that

Y (I3 < CUY2 ()17 0,530 + DIVLE) = Ua(0) |1 0,592
< CIUL(E) = U2(0) 1 Er1 (0,52
for all ¢ € [0, S]. ]

Lemma 4.2. Let P; and Py be the corresponding adjoint equation (3.14) to Uy
and Us, respectively. Then, we have

1P1(t) = Pa(t)1 200,50y < CIUL(E) = Ua(t)l[F 510,52
Proof. 1t can be easily verified that P = P, — P, satisfies

dﬁ = 1 * *
*E+AP*(FU1(Y1) — Iy, (Y1) )Py (4.4)

— FL,(Y1)"P — (F,,("1)" = Ff,(Y2) )Py = D(Y1 — Ya), 0<t<S§,
P(S) = 0.
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Taking the scalar product to (4.4) with P and using (3.3) and (3.4), and (3.5)
we obtain

1d,~ ~ ~
—5 7 PO +8IPOIS < CUMIR + DIPIE (4.5)

+C(lUa(t) = LR IR, + (1Pl + DIV = Yali3)-

Integrating from ¢ and S, and using Gronwall’s inequality and Lemma 4.1, we
have

IP(®)11% §C(|\U1(t) — U212 (0,52 1P T (0,520
+ (122 0,5) + DIV = Yall3 0,50
<CUL(t) = Us(W)I e (0,52
for all ¢ € [0, S]. Using this result in (4.5), we obtain the desired result. O

Theorem 4.3. If v is large enough, then there exists a unique optimal control

to (P).

Proof. From Theorem 3.4, we have

s
/ (P1, Bu,—v, (Y1) + Gu,—u, (t))y,vrdt + (U1, Uz — Ur) (a1 (0,8))2 > 0, (4.6)
0

s
/ (P2, By, —v,(Y2) + Gu,—u, (t))y,vrdt + v(Uz, Uy — Us)(m1(0,5))2 = 0, (4.7)
0

where P;,Y; are the solution with respect to U; and Ps, Y5 are the solution
with respect to Us.
By adding (4.6) and (4.7), we have

S
NUL = Vsl 0,92 S/ (Pr = Py, By, —u, (Y1))v,vrdt
0
S
+/ (P, By, —v, (Y2 — Y1)y vrdt
0

S
+ / <P2 - Pla GU1*U2 (t))v’yldt.
0

Since

9 [ 09w, -uvy)
By,—uv,(V1)||v < Hb* o H
|| Ui U2( 1)HV = ax(yl oz ) (H(0,L))’

O w,—u,
9w, ~vs) < ClUL(t) — U2 (8|2 [l

Ox

< CIIyllle(o.mH ‘L‘”(O L)

and

dUy(t)  dUs(t) D

1Go, -0 () < C (a0 = a(0)] + | =, dt
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we have

7

U1 = Ua|E1 0,92 SC(le — P20, U1 — Uzll(z2(0,))2 1Y1 | L= (0,5:%)
+ 1Pl 220,550 1U1 = Utll(z2(0,5))2 [1Y1 — Y2l Loo (0,553)
+ [P — P2 z2 (0,50 1U1 — U2||(H1(O,S))2)-

By using Lemma 4.1 and Lemma 4.2, we have

YNUL = ol 10,572 < CIUL = Uallta0,5y)2-

If ~y is sufficiently large, we obtain the uniqueness of the optimal control. [

il
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