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REMARK ON THE CONTROLLABILITY FOR SEMILINEAR

EVOLUTION EQUATIONS

Jin-Mun Jeong

Abstract. In this paper we deal with approximate controllability for

semilinear system in a Hilbert space. In order to obtain the controllability,

we assume that the system of the generalized eigenspaces of the principal
operator is complete in the state space, which has a simple form and can

be applied to many examples. Because of its simple form, some examples
of controllability of the systems governed by the semilinear equations will

be given.

1. Introduction

Let H and V be complex Hilbert spaces such that the imbedding V ⊂ H is
compact. The inner product and norm in H are denoted by (·, ·) and | · |, and
those in V are by ((·, ·)) and || · ||. Let −A be the operator associated with
a bounded sesquilinear form a(u, v) defined in V × V and satisfying G̊arding
inequality

Re a(u, v) ≥ c0||u||2 − c1|u|2, c0 > 0, c1 ≥ 0

for any u ∈ V . That is, A is the self adjoint operator defined by

(Au, v) = −a(u, v), u, v ∈ V.
Then we know that A generates an analytic semigroup in both of H and V ∗

where V ∗ stands for the dual space of V .
The object of this paper is to investigate the quality of reachable set of the

following semilinear parabolic type equation{
d
dtx(t) = Ax(t) + f(t, x) +Bu(t), t ∈ (0, T ],

x(0) = x0.
(1.1)

The existence and uniqueness of solution of the above system are proved in [1,
2, 5]. The condition for equivalence between the reachable set of the semilinear
system and that of its corresponding linear system(the case where f(·, ·) = 0
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in (1.1)) was established in [5, 9]. This paper is dealt with another applicable
condition for controller of approximate control problem.

The main result in this paper will show a sufficient condition for approximate
controllability obtained in [5] for the system(1.1) with some conditions for the
operator A. In order to obtain the controllability, we need some conditions of
a range condition of the control action operator and the completeness of the
generalized eigenspaces of the principal operator in the state space, which has
a simple form and can be applied to many examples. Moreover, we introduce
the solution semigroup and provide the representations of spectral projections
by using the spectral properties of the operator A. Because of its simple form,
some examples of controllability of the systems governed by the semilinear
equations will be given.

2. Main results

Let U be a Banach space of control variables and the controller B be a
bounded linear operator from U ⊂ H to H. Let f be a nonlinear mapping
R × V into H. Hence, we assume more general Lipschitz condition: for any
x1, x2 ∈ V there exists a constant L > 0 such that{

|f(t, x1)− f(t, x2)| ≤ L||x1 − x2||,
f(t, 0) = 0.

(2.1)

Then we first introduce the regularity of solutions of the semilinear equation
(1.1).

Proposition 2.1. Under the assumptions (2.1), there exists a unique solution
of (1.1) such that

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

for any x0 ∈ H. Moreover, there exists a constant C such that

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C(|x0|+ ||u||L2(0,T ;U)),

where

|| · ||L2(0,T,V )∩W 1,2(0,T ;V ∗) = max{|| · ||L2(0,T ;V ), || · ||W 1,2(0,T ;V ∗)}.

Let x(T ; f, u) be a solution of the system (1.1) associated with nonlinear
term f and control u at time T . We define reachable sets for the system (1.1)
as follows:

LT = {x(T ; 0, u) : u ∈ L2(0, T ;U)},
RT = {x(T ; f, u) : u ∈ L2(0, T ;U)}.

It is known that LT is independent of T (see [7, Lemma 7.4.1]).
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In virtue of the Riesz-Schauder theorem, if the imbedding V ⊂ H is compact
then the operator A has discrete spectrum

σ(A) = {µn : n = 1, 2, ... }

which has no point of accumulation except possibly µ = ∞ (see [6, 8]). Let
µn be a pole of the resolvent of A of order kn and Pn the spectral projection
associated with µn

Pn =
1

2πi

∫
Γn

(µ−A)−1dµ,

where Γn is a small circle centered at µn such that it surrounds no point of σ(A)
except µn (cf. Nakagiri [4]). Then the generalized eigenspace corresponding to
µn is given by

Hn = PnH = {Pnu : u ∈ H},
and we have that from P 2

n = Pn and Hn ⊂ V it follows that

PnV = {Pnu : u ∈ V } = Hn.

Let us set

Qn =
1

2πi

∫
Γn

(µ− µn)(µ−A)−1dµ.

Then we remark that dimHn <∞ and

Qin =
1

2πi

∫
Γn

(µ− µn)i(µ−A)−1dµ.

It is also well known that Qknn = 0 ( nilpotent) and (A− µn)Pn = Qn.

Definition 1. The system of the generalized eigenspaces of A is complete in
H if Cl{span{Hn : n = 1, 2, ... }} = H where Cl denotes the closure in H.

Let S(t) be an analytic semigroup generated by A. Then the mild solution
of (1.1) is represented by

x(t; f, u) = S(t)x0 +

∫ t

0

S(t− s){f(s, x(s) +Bu(s)}ds.

We denote the bounded linear operator Ŝ from L2(0, T ;H) to H by

Ŝp =

∫ T

0

S(T − s)p(s)ds

for p ∈ L2(0, T ;H).

Definition 2. The system (1.1) is approximately controllable on [0, T ] if RT =
H, that is, for any ε > 0 and z ∈ H there exists a control u ∈ L2(0, T ;U) such
that

|z − S(T )x0 − Ŝ{f(·, xu(·)) +Bu}| < ε.
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We need the following hypotheses:
(A) The system of the generalized eigenspaces of A is complete.
(B) For any ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U) such that

||S(t− ·)
(
p(·)−Bu(·)

)
||L2(0,t;H) ≤ ε, 0 ≤ t ≤ T.

Proposition 2.2. Under the assumption (B), we have LT = H(cf. [3]).

Theorem 2.3. Let us assume the hypotheses (A) and (B). Then we have
RT = LT for any T > 0.

In virtue of Proposition 2.2 and Theorem 2.1 we have known that the system
(1.1) is approximately controllable in conclusion.

Remark 1. If the semigroup S(t) generated by A is compact, we may assume
the condition (B) at only time T , that is, we can rewrite the condition (B) as
follows.
For any ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U) such that

|Ŝp− ŜBu| < ε.

Remark 2. In Naito [3] he proved Theorem 2.2 under assumptions (B) and
compact operator S(t) and also Zhou in [10] showed it under assumption (B)
and another condition of range of controller.

2.1. Proof of main results

First of all, for the meaning of assumption (B) we need to show the existence
of controller satisfying Cl{Bu : u ∈ L2(0, T ;U)}6=L2(0, T ;H). In fact, Consider
about the controller B defined by

Bu(t) =

∞∑
n=1

un(t),

where

un =

{
0, 0 ≤ t ≤ T

n

Pnu(t), T
n < t ≤ T.

Hence we see that u1(t) ≡ 0 and un(t) ∈ ImPn. By completion of generalized
eigenspaces of A we may write that g(t) =

∑∞
n=1 Png(t) for g ∈ L2(0, T ;H).

Let us choose g ∈L2(0, T ;H) satisfying∫ T

0

||P1g(t)||2dt > 0.

Then since ∫ T

0

||g(t)−Bu(t)||2dt =

∫ T

0

∞∑
n=1

||Pn(g(t)−Bu(t))||2dt

≥
∫ T

0

||P1(g(t)−Bu(t))||2dt =

∫ T

0

||P1g(t)||2dt > 0,
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the statement mentioned above is reasonable.
The proof of Proposition 2.1 is from Theorem 3.1 in [5].
Proof of Proposition 2.2. Let x0 ∈ D(A), Then putting h(s) = (x0 +

sAx0)/t it follows that

x0 =

∫ t

0

S(t− s)h(s)ds.

Thus by the condition (B) there exists u ∈ L2(0, T ;U) such that

||x0 −
∫ t

0

S(t− s)Bu(s)ds|| < ε.

Therefore, the density of the domain D(A) in H implies approximate control-
lability of (1.1) and (1.3), the proof of Proposition 2.2 is complete. �

Proof of Theorem 2.3. Through this section, we assume that the system
of the generalized eigenspaces of A is complete. Then we will prove that the
assumptions (A) and (B) are a sufficient condition for the following statement
(H) in Theorem 4.1 as in [11]:
(H) For any ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U) such that{∫ t

0
S|t− s)p(s)ds−

∫ t
0
S(t− s)Bu(s)ds| < ε, 0 ≤ t ≤ T,

||Bu||L2(0,T ;H) ≤ q||p||L2(0,T ;H).
(3.1)

where q is a constant independent of p.

If µn ∈ σ(A) then we have the Laurent expansion for R(µ−A) ≡ (µ−A)−1

at µ = µn whose principal part ( the part consisting of all the negative power
of (µ− µn) ) is a finite series:

R(µ−A) =
Pn

µ− µn
+

kn−1∑
i=1

Qin

(µ− µn)
i+1

+R0(µ),

where R0(µ) is a holomorphic part of R(µ−A) at µ = µn.

Since the system of generalized eigenspaces of A is complete, it holds that
for any ε > 0

|g(s)−
∞∑
n=1

Png(s)| ≤ ε (3.2)

for g ∈ L2(0, T ;H). For the sake of simplicity, we assume that S(t) is uniformly
bounded, that is,

|S(t)| ≤M, 0 < t < T.

Since A−1 is compact we note that there exists an arc Cn which joints µn and
some z0 with Re z0 < inf{Reµn : µn ∈ σ(A)} and Cn − {µn} ⊂ ρ(A) where
ρ(A) is the resolvent set of A.
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Lemma 2.4. Let S(t) be the semigroup generated by A. Then we give an
expression of the semigroup that

S(t)g = eµnt
kn−1∑
i=0

ti

i!
Qing, ∀g ∈ PnH.

Proof. From the well known fact that

APn = A
1

2πi

∫
Γn

(µ−A)−1dµ =
1

2πi

∫
Γn

µ(µ−A)−1dµ,

we have

S(t)Pn =
1

2πi

∫
Γn

eµt(µ−A)−1dµ.

If g ∈ PnH then g = Png. Hence, we have

S(t)g = S(t)Png =
1

2πi

∫
Γn

eµt(µ−A)−1gdµ

= eµnt
1

2πi

∫
Γn

e(µ−µn)t(µ−A)−1gdµ

= eµnt{
∞∑
i=0

ti

i!
(

1

2πi

∫
Γn

(µ− µn)i(µ−A)−1gdµ)} = eµnt
kn−1∑
i=0

ti

i!
Qing.

Here, we used the nilpotent property of the operator Qn in the last equality.
The proof of Lemma is complete. �

Remark 3. If the assumption (A) is satisfied then S(t)P is extended to the
whole real line so that

S(t)P =

∞∑
n=1

kn−1∑
i=0

eµntti

i!
Qin, −∞ < t <∞.

Let g ∈ L2(0, t;H). Then by the assumption (B) for any ε > 0 there exists
a control v ∈ L2(0, t;U) such that

||S(t− ·)
(
g(·)−Bv(·)

)
||L2(0,t;H) ≤

ε

2
√
T
, 0 ≤ t ≤ T, (3.3)

and

|v(s)−
∞∑
n=1

Pnv(s)| ≤ ε

M
√
T
, (3.4)

in the sense of (3.4). Let us define h ∈ H by

h =

∞∑
n=1

∫ t

0

S(t− s)Pnv(s)ds =

∞∑
n=1

hn.
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Here, we put hn =
∫ t

0
S(t − s)Pnv(s)ds. Since Pnv(s) ∈ PnH, in terms of

Lemma 3.1 we have that

hn =

∫ t

0

S(t− s)Pnv(s)ds =

kn−1∑
i=1

∫ t

0

eµn(t−s) (t− s)i

i!
QinPnv(s)ds.

Define

u(s) =

∞∑
n=1

un(s), un(s) = Pnv(s).

Then it follows∫ t

0

S(t− s)Bu(s)ds =

∞∑
n=1

∫ t

0

S(t− s)Bun(s)ds =

∞∑
n=1

∫ t

0

S(t− s)Pnv(s)ds.

Thus from (3.3) and (3.4) it follows that

|
∫ t

0

S(t− s)Bu(s)ds−
∫ t

0

S(t− s)g(s)ds|

≤ |
∫ t

0

S(t− s)Bu(s)ds−
∞∑
n=1

∫ t

0

S(t− s)Pnv(s)ds|

+ |
∞∑
n=1

∫ t

0

S(t− s)Pnv(s)ds−
∫ t

0

S(t− s)Bv(s)ds|

+ |
∫ t

0

S(t− s)Bv(s)ds−
∫ t

0

S(t− s)g(s)ds| < ε

2
+
ε

2
< ε.

Hence, from (3.1), (3.2) and Hölder inequality it holds

|Bu(s)| ≤ |
∞∑
n=1

BPnv(s)| ≤ |
∞∑
n=1

eµnt−s
kn−1∑
i=1

(t− s)i

i!
QinBPnv(s)|

≤ |S(t− s)
∞∑
n=1

BPnv(s)| ≤ |S(t− s)
( ∞∑
n=1

BPnv(s)−Bv(s)
)
|

+ |S(t− s)
(
Bv(s)− g(s)

)
|+ |S(t− s)g(s)|.

So from the above equality we can conclude that there exists a positive constant
q such that for any ε > 0

||Bu||2L2(0,t;H) ≤ q||g||L2(0,t;H) + ε.

Here, we note the constant q is independent of g. Since ε is arbitrary we have
proof that the assumption of Theorem 2.3 implies the second statement of (3.1)
and so, the condition (3.1) is immediately form the assumption (B). Therefore,
in virtue of Theorem 4.1 of [11] the proof of Theorem 2.3 is complete.

Example 1. Assume U = H and B = 1, which is the identity operator H.
Then assumption (B) obviously is satisfied.
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Example 2. We consider the heat control system studied by Zhou [10,
Example 1] and Naito [5 Example 1]. Let H = L2(0, π) and A = −d2/dx2

H = L2(0, π) and A = −d2/dx2 with

D(A) = {y ∈ H : d2y/dx2 ∈ H and y(0) = y(π) = 0}.

Then {en = (2/π)1/2 sinnx : 0 ≤ x ≤ π, n = 1, ... } is orthonomal base for
H.

Case 1 Define an infinite dimensional space U by

U = {
∞∑
n=2

unen :

∞∑
n=2

u2
n <∞}

with norm defined by ||u||U = (
∑∞
n=2 u

2
n)1/2. Define a continuous linear oper-

ator B from U to H as follows:

Bu = 2u2e1 +

∞∑
n=2

unen for u =

∞∑
n=2

unen ∈ U.

It is directly seen that the above controller B satisfies the conditions (B). We
can also check briefly by using the assumption (3.1). In fact, let f ∈ L2(0, T ;H)
and f =

∑∞
n=1 fn(s)en. Then we choose a function u ∈ L2(0, t;U) for 0 ≤ t ≤ T

such that u2 = 1
2f1 + f2 and un = fn for n = 2, 3, .... Hence, choosing a

constant in condition (3.1) such that q > 7
2 , not only the system (1.1) with the

operator A mentioned above but also general semilinear case is approximate
controllable.

Case 2 Define U = {e1, · · · }. For any u =
∑∞
n=2 define

Bu = uie1 +

∞∑
n=2

unen,

where i is some fixed integer. Define PU as the orthogonal projection of H on
U . In this case, PuB is the identity operator in U . Hence the assumption (B)
is satisfied.
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