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FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION

OF FOURIER-TYPE FUNCTIONALS ON WIENER SPACE

Byoung Soo Kim

Abstract. We develop a Fourier-Feynman theory for Fourier-type func-

tionals ∆kF and ∆̂kF on Wiener space. We show that Fourier-Feynman

transform and convolution of Fourier-type functionals exist. We also
show that the Fourier-Feynman transform of the convolution product of

Fourier-type functionals is a product of Fourier-Feynman transforms of

each functionals.

1. Introduction and preliminaries

Let C0[0, T ] denote the Wiener space, that is, the space of real valued
continuous functions x on [0, T ] with x(0) = 0. Let M denote the class of
all Wiener measurable subsets of C0[0, T ] and let m denote Wiener measure.
(C0[0, T ],M,m) is a complete measure space and we denote the Wiener integral
of a functional F by ∫

C0[0,T ]

F (x) dm(x).

A subset E of C0[0, T ] is said to be scale-invariant measurable provided ρE
is Wiener measurable for every ρ > 0, and a scale-invariant measurable set
N is said to be scale-invariant null provided m(ρN) = 0 for every ρ > 0. A
property that holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere (s-a.e.). Given two complex-valued functions F
and G on C0[0, T ], we say that F = G s-a.e. if F (ρx) = G(ρx) for m almost
every x ∈ C0[0, T ] for all ρ > 0.

Let C+ and C∼+ denote the sets of complex numbers with positive real part
and nonzero complex numbers with nonnegative real part, respectively.
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Let F be a complex valued scale-invariant measurable functional on C0[0, T ]
such that

J(λ) =

∫
C0[0,T ]

F (λ−1/2x) dm(x)

exists as a finite number for all real λ > 0. If there exists an analytic function
J∗(λ) on C+ such that J∗(λ) = J(λ) for all λ > 0, then J∗(λ) is defined to
be the analytic Wiener integral of F over C0[0, T ] with parameter λ, and for
λ ∈ C+ we write ∫ anwλ

C0[0,T ]

F (x) dm(x) = J∗(λ).

Let F be a functional on C0[0, T ] such that
∫ anwλ
C0[0,T ]

F (x) dm(x) exists for all

λ ∈ C+. If the following limit exists for nonzero real number q, then we call
it the analytic Feynman integral of F over C0[0, T ] with parameter q and we
write ∫ anfq

C0[0,T ]

F (x) dm(x) = lim
λ→−iq

∫ anwλ

C0[0,T ]

F (x) dm(x)

where λ→ −iq through C+.
Now we introduce the definitions of analytic Fourier-Feynman transform and

convolution product for functionals defined on C0[0, T ]. Let 1 ≤ p <∞ and let
q be a nonzero real number.

Definition 1. Let F be a functional on C0[0, T ]. For λ ∈ C+ and y ∈ C0[0, T ],
let

Tλ(F )(y) =

∫ anwλ

C0[0,T ]

F (x+ y) dm(x). (1)

For 1 < p <∞, we define the Lp analytic Fourier-Feynman transform T
(p)
q (F )

of F on C0[0, T ] by the formula (λ ∈ C+)

T (p)
q (F )(y) = l. i.m.

λ→−iq
Tλ(F )(y), (2)

whenever this limit exists; that is, for each ρ > 0,

lim
λ→−iq

∫
C0[0,T ]

|Tλ(F )(ρx)− T (p)
q (F )(ρx)|p

′
dm(x) = 0

where 1/p + 1/p′ = 1. We define the L1 analytic Fourier-Feynman transform

T
(1)
q (F ) of F by (λ ∈ C+)

T (1)
q (F )(y) = lim

λ→−iq
Tλ(F )(y), (3)

for s-a.e. y ∈ C0[0, T ], whenever this limit exists [2, 7, 8, 9].

By the definition of the analytic Feynman integral and the L1 analytic
Fourier-Feynman transform, it is easy to see that for a nonzero real number q,

T (1)
q (F )(y) =

∫ anfq

C0[0,T ]

F (x+ y) dm(x) (4)
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and

T (1)
q (F )(0) =

∫ anfq

C0[0,T ]

F (x) dm(x). (5)

Definition 2. Let F and G be functionals on C0[0, T ]. For λ ∈ C+ and
y ∈ C0[0, T ], we define their convolution product by

(F ∗G)λ(y) =

∫ anwλ

C0[0,T ]

F
(y + x√

2

)
G
(y − x√

2

)
dm(x). (6)

Moreover if λ = −iq for nonzero real q, the convolution product is defined by

(F ∗G)q(y) =

∫ anfq

C0[0,T ]

F
(y + x√

2

)
G
(y − x√

2

)
dm(x) (7)

if it exists [7, 8, 14, 15].

It is easy to see that commutative law holds for the convolution product [7].
Various results involving Fourier-Feynman transform on Wiener space have

been established and research based on this definition is continuing at the
present time [1, 3, 4, 5, 12]. Recently, Kim, Kim and Yang extended the
concepts of Fourier-Feynman transform and convolution on Wiener space to
the concept of Fourier-Yeh-Feynman transform and convolution on Yeh-Wiener
space [10, 11]. For a detailed survey of the previous work on the Fourier-
Feynman transfprm and related topics, see [13].

Now we describe the class of functionals that we work with in this pa-
per. Recently, Chung and Tuan [6] introduced the Fourier-type functionals via
the Fourier transform on Wiener space and investigate some properties of the
Fourier-type functionals.

Let f̂ be the Fourier transform of f ,

f̂(~ξ) =
( 1

2π

)n/2 ∫
Rn
f(~u) exp{i~u · ~ξ} d~u, ~ξ ∈ Rn, (8)

where ~u · ~ξ = u1ξ1 + · · ·+ unξn.
Let S(Rn) be the Schwartz space of infinitely differentiable functions f(~u)

decaying at infinity together with all its derivatives faster than any polynomial
of |~u|−1. Note that the Fourier transform is an isomorphism on the Schwartz

space S(Rn). Also, ∆kf and ∆̂kf are elements of S(Rn) for all k = 0, 1, 2, . . .,
where ∆ denotes the Laplacian

∆ =
∂2

∂u21
+

∂2

∂u22
+ · · ·+ ∂2

∂u2n
.

Note that S(Rn) is a subset of L1(Rn), more precisely, for φ ∈ S(Rn) we know
that

‖φ‖1 =

∫
Rn

(1 + |~u|2)−1(1 + |~u|2)|φ(~u)| d~u

≤πn[‖φ‖∞ + ‖| · |2φ(·)‖∞] <∞.
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Now we introduce the Fourier-type functionals defined on Wiener space.

Definition 3. Let {α1, α2, . . . , αn} be an orthonormal set of functions in
L2[0, T ] and let k be a nonnegative integer. For f ∈ S(Rn), the Fourier-type

functionals ∆kF and ∆̂kF on Wiener space C0[0, T ] are defined by

∆kF (x) = ∆kf(〈~α, x〉) (9)

and
∆̂kF (x) = ∆̂kf(〈~α, x〉) (10)

where 〈~α, x〉 = (〈α1, x〉, . . . , 〈αn, x〉) and 〈αj , x〉 denotes the Paley-Wiener-
Zigmund stochastic integral for j = 1, 2, . . . , n.

In this paper, we develop a Fourier-Feynman theory for Fourier-type func-

tionals ∆kF and ∆̂kF on Wiener space. In Section 2, we show that Fourier-
Feynman transform of Fourier-type functionals exists. In Section 3, we show
that convolution of Fourier-type functionals exists. We also show that the
Fourier-Feynman transform of the convolution product of Fourier-type func-
tionals is a product of Fourier-Feynman transforms of each functionals.

We close this section by introducing a well-known Wiener integration for-
mula for functionals f(〈~α, x〉) = f(〈α1, x〉, . . . , 〈αn, x〉);∫

C0[0,T ]

f(〈~α, x〉) dm(x) = (2π)−n/2
∫
Rn
f(~u) exp

{
−1

2
|~u|2
}
d~u, (11)

where |~u|2 =
∑n
j=1 u

2
j .

2. Fourier-Feynman transform of Fourier-type functionals

In this section we show that the Lp analytic Fourier-Feynman transforms

T
(p)
q (∆kF ) and T

(p)
q (∆̂kF ) of the Fourier-type functionals exist. We also es-

tablish a relationship between T
(p)
q (∆kF ) and T

(p)
q (∆̂kF ).

Theorem 2.1. Let the Fourier-type functional ∆kF be given by (9). Then
for all p with 1 ≤ p < ∞ and for all nonzero real number q, the Lp analytic

Fourier-Feynman transform T
(p)
q (∆kF ) exists and is given by the formula

T (p)
q (∆kF )(y) =

(−iq
2π

)n/2 ∫
Rn

∆kf(~u) exp
{ iq

2
|~u− 〈~α, y〉|2

}
d~u (12)

for s-a.e. y ∈ C0[0, T ].

Proof. Using the Wiener integration formula (11), we obtain

Tλ(∆kF )(y) =

∫
C0[0,T ]

∆kf(λ−1/2〈~α, x〉+ 〈~α, y〉) dm(x)

=
( λ

2π

)n/2 ∫
Rn

∆kf(~u+ 〈~α, y〉) exp
{
−λ

2
|~u|2
}
d~u

=
( λ

2π

)n/2 ∫
Rn

∆kf(~u) exp
{
−λ

2
|~u− 〈~α, y〉|2

}
d~u
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for all λ > 0 and y ∈ C0[0, T ]. Let λ ∈ C∼+ and let {λn} be a sequence in C∼+
which converges to λ. Since ∆kf is an element of S(Rn) and since S(Rn) is a
subset of L1(Rn), we can apply dominated convergence theorem to show that

lim
n→∞

Tλn(∆kF )(y) = Tλ(∆kF )(y)

and so Tλ(∆kF )(y) is a continuous function of λ in C∼+. Let D be a closed
contour in C+. By the Fubini theorem and the Cauchy theorem,∫

D

∫
Rn

∆kf(~u) exp
{
−λ

2
|~u− 〈~α, y〉|2

}
d~u dλ = 0.

Hence by the Morera’s theorem,
∫
Rn ∆kf(~u) exp{−λ2 |~u− 〈~α, y〉|

2} d~u is an an-
alytic function of λ in C+. Hence for λ ∈ C+ and y ∈ C0[0, T ],

Tλ(∆kF )(y) =
( λ

2π

)n/2 ∫
Rn

∆kf(~u) exp
{
−λ

2
|~u− 〈~α, y〉|2

}
d~u.

In case p = 1, by the dominated convergence theorem,

T (1)
q (∆kF )(y) = lim

λ→−iq
Tλ(∆kF )(y)

=
(−iq

2π

)n/2 ∫
Rn

∆kf(~u) exp
{ iq

2
|~u− 〈~α, y〉|2

}
d~u

for y ∈ C0[0, T ]. If 1 < p < ∞, again by the dominated convergence theorem,
the Wiener integral∫
C0[0,T ]

∣∣∣(−iq
2π

)n/2 ∫
Rn

∆kf(~u) exp
{ iq

2
|~u−〈~α, ρy〉|2

}
d~u−Tλ(∆kF )(ρy)

∣∣∣p′ dm(y)

goes to 0 as λ → −iq for each ρ > 0. Hence T
(p)
q (∆kF )(y) exists and is given

by (12) for s-a.e. y ∈ C0[0, T ] and for all desired values of p and q. �

As we have seen in (5), the L1 analytic Fourier-Feynman transform of F
evaluated at 0 is equal to the analytic Feynman integral of F . Hence we have
the following corollary.

Corollary 2.2. Let the Fourier-type functional ∆kF be given by (9). Then
∆kF is analytic Wiener integrable and∫ anwλ

C0[0,T ]

∆kF (x) dm(x) =
( λ

2π

)n/2 ∫
Rn

∆kf(~u) exp
{
−λ

2
|~u|2
}
d~u (13)

for all λ ∈ C+. Moreover, ∆kF is analytic Feynman integrable and∫ anfq

C0[0,T ]

∆kF (x) dm(x) =
(−iq

2π

)n/2 ∫
Rn

∆kf(~u) exp
{ iq

2
|~u|2
}
d~u (14)

for all nonzero real number q.

In the following theorem we evaluate Fourier-Feynman transform of ∆̂kF .
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Theorem 2.3. Let the Fourier-type functional ∆̂kF be given by (10). Then
for all p with 1 ≤ p < ∞ and for all nonzero real number q, the Lp analytic

Fourier-Feynman transform T
(p)
q (∆̂kF ) exists and is given by the formula

T (p)
q (∆̂kF )(y) =

( 1

2π

)n/2 ∫
Rn

∆kf(~u) exp
{
− i

2q
|~u|2 + i〈~α, y〉 · ~u

}
d~u (15)

for s-a.e. y ∈ C0[0, T ].

Proof. Using the Wiener integration formula (11) we obtain

Tλ(∆̂kF )(y) =

∫
C0[0,T ]

∆̂kf(λ−1/2〈~α, x〉+ 〈~α, y〉) dm(x)

=
( λ

2π

)n/2 ∫
Rn

∆̂kf(~v + 〈~α, y〉) exp
{
−λ

2
|~v|2
}
d~v

=
( λ

2π

)n/2 ∫
Rn

∆̂kf(~v) exp
{
−λ

2
|~v − 〈~α, y〉|2

}
d~v

for all λ > 0 and y ∈ C0[0, T ]. By (8) we have

Tλ(∆̂kF )(y)

=
( λ

2π

)n/2( 1

2π

)n/2 ∫
Rn

∫
Rn

∆kf(~u) exp
{
−λ

2
|~v − 〈~α, y〉|2 + i~u · ~v

}
d~u d~v.

But since ∫
Rn

exp
{
−λ

2
|~v − 〈~α, y〉|2 + i~u · ~v

}
d~v

=

∫
Rn

exp
{
−λ

2

∣∣∣~v − [〈~α, y〉+
i

λ
~u
]∣∣∣2 + i〈~α, y〉 · ~u− 1

2λ
|~u|2
}
d~v

=
(2π

λ

)n/2
exp
{
− 1

2λ
|~u|2 + i〈~α, y〉 · ~u

}
,

we have

Tλ(∆̂kF )(y) =
( 1

2π

)n/2 ∫
Rn

∆kf(~u) exp
{
− 1

2λ
|~u|2 + i〈~α, y〉 · ~u

}
d~u

for all λ > 0 and y ∈ C0[0, T ]. Let λ ∈ C∼+ and let {λn} be a sequence in C∼+
which converges to λ. Since ∆kf is integrable on Rn, we can apply dominated
convergence theorem to show that

lim
n→∞

Tλn(∆̂kF )(y) = Tλ(∆̂kF )(y)

and so Tλ(∆̂kF )(y) is a continuous function of λ in C∼+. Let D be a closed
contour in C+. By the Fubini theorem and the Cauchy theorem,∫

D

∫
Rn

∆kf(~u) exp
{
− 1

2λ
|~u|2 + i〈~α, y〉 · ~u

}
d~u dλ = 0.



FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION 473

Hence by the Morera’s theorem,
∫
Rn ∆kf(~u) exp{− 1

2λ |~u|
2 + i〈~α, y〉 · ~u} d~u is an

analytic function of λ in C+. Hence for λ ∈ C+ and y ∈ C0[0, T ],

Tλ(∆̂kF )(y) =
( 1

2π

)n/2 ∫
Rn

∆kf(~u) exp
{
− 1

2λ
|~u|2 + i〈~α, y〉 · ~u

}
d~u.

In case p = 1, by the dominated convergence theorem,

T (1)
q (∆̂kF )(y) = lim

λ→−iq
Tλ(∆̂kF )(y)

=
( 1

2π

)n/2 ∫
Rn

∆kf(~u) exp
{
− i

2q
|~u|2 + i〈~α, y〉 · ~u

}
d~u

for y ∈ C0[0, T ]. If 1 < p < ∞, again by the dominated convergence theorem,
the Wiener integral∫

C0[0,T ]

∣∣∣( 1

2π

)n/2 ∫
Rn

∆kf(~u) exp
{
− i

2q
|~u|2 + i〈~α, ρy〉 · ~u|2

}
d~u

− Tλ(∆̂kF )(ρy)
∣∣∣p′ dm(y)

goes to 0 as λ → −iq for each ρ > 0. Hence T
(p)
q (∆̂kF )(y) exists and is given

by (15) for s-a.e. y ∈ C0[0, T ] and for all desired values of p and q. �

The following corollary is a parallel result of Corollary 2.2 for the Fourier-

type functional ∆̂kF . It can be obtained by (15) and (5).

Corollary 2.4. Let the Fourier-type functional ∆̂kF be given by (10). Then

∆̂kF is analytic Wiener integrable and∫ anwλ

C0[0,T ]

∆̂kF (x) dm(x) =
( 1

2π

)n/2 ∫
Rn

∆kf(~v) exp
{
− 1

2λ
|~v|2
}
d~v (16)

for all λ ∈ C+. Moreover, ∆̂kF is analytic Feynman integrable and∫ anfq

C0[0,T ]

∆̂kF (x) dm(x) =
( 1

2π

)n/2 ∫
Rn

∆kf(~u) exp
{
− i

2q
|~u|2
}
d~u (17)

for any nonzero real number q.

Comparing equations (12) and (15), we obtain a relationship between the

Fourier-Feynman transforms of ∆kF and ∆̂kF as in the following theorem.

Theorem 2.5. Let the Fourier-type functionals ∆kF and ∆̂kF be given by (9)
and (10), respectively. Let 1 ≤ p < ∞ and let q be any nonzero real number.
Then we have

T (p)
q (∆̂kF )(y) = (−iq)n/2T (p)

−1/q(∆
kF )(qy) exp

{ iq
2
|〈~α, y〉|2

}
(18)

for s-a.e. y ∈ C0[0, T ].
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Proof. Replacing q with −1/q and y with qy in (12), we have

T
(p)
−1/q(∆

kF )(qy)

=
( i

2πq

)n/2 ∫
Rn

∆kf(~u) exp
{
− i

2q
|~u− q〈~α, y〉|2

}
d~u

=
( i

2πq

)n/2 ∫
Rn

∆kf(~u) exp
{
− i

2q
|~u|2 + i〈~α, y〉 · ~u− iq

2
|〈~α, y〉|2

}
d~u.

Finally by (15) we have the desired result. �

If we take y = 0 in (18) above, by (5) we have a relationship between the

analytic Feynman integrals of ∆kF and ∆̂kF as follows.

Corollary 2.6. Let the Fourier-type functionals ∆kF and ∆̂kF be given by
(9) and (10), respectively. Then we have∫ anfq

C0[0,T ]

∆̂kF (x) dm(x) = (−iq)n/2
∫ anf−1/q

C0[0,T ]

∆kF (x) dm(x) (19)

for any nonzero real number q.

3. Convolution of Fourier-type functionals

In this section we will show the existence of the convolution product for
the Fourier-type functionals on Wiener space. We also show that the Fourier-
Feynman transform of the convolution product of Fourier-type functionals is a
product of Fourier-Feynman transforms of each functionals.

Lemma 3.1. Let f, g ∈ S(Rn) and let k be a nonnegative integer. For λ ∈ C∼+
and ~w ∈ Rn, let

h(λ, ~w) =
( λ

2π

)n/2 ∫
Rn

∆kf
( ~w + ~u√

2

)
∆kg

( ~w − ~u√
2

)
exp
{
−λ

2
|~u|2
}
d~u. (20)

Then h(λ, 〈~α, y〉) exists for a.e. y ∈ C0[0, T ].

Proof. First note that∫
Rn
|h(λ, ~w)| d~w ≤

( |λ|
2π

)n/2 ∫
Rn

∫
Rn

∣∣∣∆kf
( ~w + ~u√

2

)
∆kg

( ~w − ~u√
2

)∣∣∣ d~u d~w.
Letting ~v = (~w + ~u)/

√
2 and ~r = (~w − ~u)/

√
2, we have∫

Rn
|h(λ, ~w)| d~w ≤

( |λ|
2π

)n/2 ∫
Rn

∫
Rn
|∆kf(~v)||∆kg(~r)| d~v d~r

=
( |λ|

2π

)n/2
‖∆kf‖1‖∆kg‖1.

But as we have seen in Section 1, ∆kf and ∆kg are elements of S(Rn) and
S(Rn) is a subset of L1(Rn). Hence the right hand side of the last inequality is
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a finite number and so h(λ, ~w) exists for a.e. ~w ∈ Rn. Since the Paley-Wiener-
Zigmund integral 〈αj , y〉, for j = 1, . . . , n, exists for a.e. y ∈ C0[0, T ], now it is
easy to see that h(λ, 〈~α, y〉) exists for a.e. y ∈ C0[0, T ]. �

Next we show that the convolution product of the Fourier-type function-
als exists. Since we have two kinds of Fourier-type functionals, the existence
theorem of the convolution product is divided into three cases. In Theorem
3.2 below, we consider the convolution product of ∆kF and ∆kG. While in

Theorem 3.3, we consider the convolution product of ∆kF and ∆̂kG. Finally

in Theorem 3.4, we consider the convolution product of ∆̂kF and ∆̂kG.

Theorem 3.2. Let the Fourier-type functionals ∆kF and ∆kG are given by
(9) with corresponding f and g, respectively. Then for all nonzero real number
q, the convolution product (∆kF ∗∆kG)q exists and is given by the formula

(∆kF ∗∆kG)q(y) = h(−iq, 〈~α, y〉), (21)

for a.e. y ∈ C0[0, T ], where h is given by (20).

Proof. For all λ > 0, by the Wiener integration formula (11), we have

(∆kF ∗∆kG)λ(y)

=

∫
C0[0,T ]

∆kf
( 〈~α, y〉√

2
+
〈~α, x〉√

2λ

)
∆kg

( 〈~α, y〉√
2
− 〈~α, x〉√

2λ

)
dm(x)

=
( λ

2π

)n/2 ∫
Rn

∆kf
( 〈~α, y〉+ ~u√

2

)
∆kg

( 〈~α, y〉 − ~u√
2

)
exp
{
−λ

2
|~u|2
}
d~u

= h(λ, 〈~α, y〉)

where h is given by (20). Let λ ∈ C∼+ and let {λn} be a sequence in C∼+ which
converges to λ. Then

|∆kf
( 〈~α, y〉+ ~u√

2

)
∆kg

( 〈~α, y〉 − ~u√
2

)
exp
{
−λn

2
|~u|2
}∣∣∣

≤ |∆kf
( 〈~α, y〉+ ~u√

2

)
∆kg

( 〈~α, y〉 − ~u√
2

)
exp
{
− c

2
|~u|2
}∣∣∣,

for all n = 1, 2, . . ., where c = min{Re(λn) : n = 1, 2, . . .} ≥ 0. By the same
argument as in the proof of Lemma 3.1, we know that the right hand side of
the above inequality is an integrable function of ~u on Rn for a.e. y ∈ C0[0, T ].
Hence we can apply dominated convergence theorem to show that

lim
n→∞

h(λn, 〈~α, y〉) = h(λ, 〈~α, y〉),
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and so h(λ, 〈~α, y〉) is a continuous function of λ in C∼+. Let D be a closed
contour in C+. Then∫

Rn

∫
D

∣∣∣( λ
2π

)n/2
∆kf

( 〈~α, y〉+ ~u√
2

)
∆kg

( 〈~α, y〉 − ~u√
2

)
exp
{
−λ

2
|~u|2
}∣∣∣ dλ d~u

≤
( a

2π

)n/2 ∫
Rn

∫
D

∣∣∣∆kf
( 〈~α, y〉+ ~u√

2

)
∆kg

( 〈~α, y〉 − ~u√
2

)∣∣∣ dλ d~u
=
( a

2π

)n/2
l(D)

∫
Rn

∣∣∣∆kf
( 〈~α, y〉+ ~u√

2

)
∆kg

( 〈~α, y〉 − ~u√
2

)∣∣∣ d~u,
where a = max{|λ| : λ ∈ D} and l(D) denotes the length of the contour D. By
the same argument as in the proof of Lemma 3.1, we know that the integral on
the right hand side of the last inequality is finite for a.e. y ∈ C0[0, T ]. Hence
we can apply Fubini theorem to show that∫

D

h(λ, 〈~α, y〉) dλ

=

∫
Rn

∫
D

( λ
2π

)n/2
∆kf

( 〈~α, y〉+ ~u√
2

)
∆kg

( 〈~α, y〉 − ~u√
2

)
exp
{
−λ

2
|~u|2
}
dλ d~u.

But since the integrand on the right hand side of the above equation is an
analytic function of λ in C+, the inner integral is equal to 0. Hence by the
Morera’s theorem, h(λ, 〈~α, y〉) is an analytic function of λ in C+. Finally, we
can apply dominated convergence theorem once more to show that

(∆kF ∗∆kG)q(y) = lim
λ→−iq

h(λ, 〈~α, y〉) = h(−iq, 〈~α, y〉)

for a.e. y ∈ C0[0, T ] as we wished to prove. �

A careful look at the proofs of Lemma 3.1 and Theorem 3.2, we see that
the essential conditions to ensure the results are the integrability of ∆kf and

∆kg. Since ∆̂kf and ∆̂kg are also elements of L1(Rn), we have the following
theorems. We just state them without proofs.

Theorem 3.3. Let the Fourier-type functionals ∆kF and ∆̂kG are given by
(9) and (10) with corresponding f and g in S(Rn), respectively. Then for all

nonzero real number q, the convolution product (∆kF ∗ ∆̂kG)q exists and is
given by the formula

(∆kF ∗ ∆̂kG)q(y)

=
( λ

2π

)n/2 ∫
Rn

∆kf
( 〈~α, y〉+ ~u√

2

)
∆̂kg

( 〈~α, y〉 − ~u√
2

)
exp
{
−λ

2
|~u|2
}
d~u,

(22)

for a.e. y ∈ C0[0, T ].

As we noted in Section 1, the convolution product for the Fourier-Feynman

transform is commutative. Hence we know that (∆̂kF ∗∆kG)q also exists.
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Theorem 3.4. Let the Fourier-type functionals ∆̂kF and ∆̂kG are given by
(10) with corresponding f and g in S(Rn), respectively. Then for all nonzero

real number q, the convolution product (∆̂kF ∗ ∆̂kG)q exists and is given by the
formula

(∆̂kF ∗ ∆̂kG)q(y)

=
( λ

2π

)n/2 ∫
Rn

∆̂kf
( 〈~α, y〉+ ~u√

2

)
∆̂kg

( 〈~α, y〉 − ~u√
2

)
exp
{
−λ

2
|~u|2
}
d~u,

(23)

for a.e. y ∈ C0[0, T ].

Although the right hand sides of (22) and (23) can be expressed further

using the equations (8) for the Fourier transform ∆̂kF and ∆̂kG, we will not
give them here.

In our next theorem we show that the Fourier Feynman transform of con-
volution product of Fourier-type functionals ∆kF and ∆kG is the product of
transforms of each functionals.

Theorem 3.5. Let the Fourier-type functionals ∆kF and ∆kG are given by
(9) with corresponding f and g in S(Rn), respectively. Let 1 ≤ p <∞ and let
q be a nonzero real number. Then

T (p)
q ((∆kF ∗∆kG)q)(y) = T (p)

q (∆kF )
( y√

2

)
T (p)
q (∆kG)

( y√
2

)
, (24)

for a.e. y ∈ C0[0, T ].

Proof. For all λ > 0, by the expression (21) for convolution product of ∆kF
and ∆kG, we have

Tλ((∆kF ∗∆kG)q)(y) =

∫
C0[0,T ]

(∆kF ∗∆kG)q(λ
−1/2x+ y) dm(x)

=

∫
C0[0,T ]

h(−iq, λ−1/2〈~α, x〉+ 〈~α, y〉) dm(x).

By the Wiener integration formula (11) and the expression (20) for h, we have

Tλ((∆kF ∗∆kG)q)(y)

=
( λ

2π

)n/2 ∫
Rn
h(−iq, ~v + 〈~α, y〉) exp

{
−λ

2
|~v|2
}
d~v

=
( λ

2π

)n/2(−iq
2π

)n/2 ∫
Rn

∫
Rn

∆kf
(~v + ~u+ 〈~α, y〉√

2

)
∆kg

(~v − ~u+ 〈~α, y〉√
2

)
exp
{
−λ

2
(|~v|2 + |~u|2)

}
d~u d~v.
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Letting ~w = (~v + ~u)/
√

2 and ~r = (~v − ~u)/
√

2, we have

Tλ((∆kF ∗∆kG)q)(y)

=
( λ

2π

)n/2(−iq
2π

)n/2(∫
Rn

∆kf(~w) exp
{
−λ

2

∣∣∣~w − 〈~α, y〉√
2

∣∣∣2} d~w)(∫
Rn

∆kg(~r) exp
{
−λ

2

∣∣∣~r − 〈~α, y〉√
2

∣∣∣2} d~r).
Now by the same argument as in the proof of Theorem 2.1, we can show that
the last expression is analytic in λ ∈ C∼+ and we have

T (p)
q ((∆kF ∗∆kG)q)(y) =

(−iq
2π

)n(∫
Rn

∆kf(~w) exp
{ iq

2

∣∣∣~w − 〈~α, y〉√
2

∣∣∣2} d~w)(∫
Rn

∆kg(~r) exp
{ iq

2

∣∣∣~r − 〈~α, y〉√
2

∣∣∣2} d~r).
Finally by Theorem 2.1 we complete the proof. �

Considering Theorems 3.3, 3.4 and the proof of Theorem 3.5, we see that

the relationship (24) holds for the Fourier-type functionals ∆̂kF and ∆̂kG. We
state the results in Theorems 3.6 and 3.7 below without proofs.

Theorem 3.6. Let the Fourier-type functionals ∆kF and ∆̂kG are given by
(9) and (10) with corresponding f and g in S(Rn), respectively. Let 1 ≤ p <∞
and let q be a nonzero real number. Then

T (p)
q ((∆kF ∗ ∆̂kG)q)(y) = T (p)

q (∆kF )
( y√

2

)
T (p)
q (∆̂kG)

( y√
2

)
, (25)

for a.e. y ∈ C0[0, T ].

Theorem 3.7. Let the Fourier-type functionals ∆̂kF and ∆̂kG are given by
(10) with corresponding f and g in S(Rn), respectively. Let 1 ≤ p <∞ and let
q be a nonzero real number. Then

T (p)
q ((∆̂kF ∗ ∆̂kG)q)(y) = T (p)

q (∆̂kF )
( y√

2

)
T (p)
q (∆̂kG)

( y√
2

)
, (26)

for a.e. y ∈ C0[0, T ].
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