DOI QR코드

DOI QR Code

효소를 이용한 아실화 반응의 최근 동향과 전망

Recent Developments and Prospects in the Enzymatic Acylations

  • 박오진 (연변대학 과학기술학원 생물화공학부)
  • Park, Oh-Jin (Department of Biological and Chemical Engineering, Yanbian University of Science and Technology)
  • 투고 : 2013.08.14
  • 심사 : 2013.10.17
  • 발행 : 2013.12.01

초록

가수분해 효소(혹은 아실전이효소)를 이용한 알콜과 아민의 아실반응은 에스터의 가수분해 반응(hydrolysis, deacylation)과 더불어 효소를 이용한 유기합성 반응에서 이미 잘 확립된 기술로서, 산업체에서 제약의 합성이나 고분자의 합성에서 널리 응용되고 있다. 이러한 효소를 이용한 아실화 반응은 주로 열역학적인 제한으로 인해 그동안 대부분이 주로 유기용매에서 이루어지고 있다. 최근 들어서, 수용액에서 아실화반응을 전이효소를 이용하여 효율적으로 할 수 있다는 보고와 함께 그 반응 기제에 대한 연구들이, X-ray 구조와 이러한 반응을 가능하게 하는 효소의 단백질 서열 비교 연구, 그리고 계산 화학에 의한 효소의 설계 연구등을 통해 새롭게 밝혀지고 있다. 본 총설에서는 효소를 이용한 아실화반응을 유기용매와 수용액에서의 수행함에 있어서 장단점을 비교해 보면서, 앞으로의 전망도 함께 제시하고자 한다. 특별히 다양한 천연물들의 구조 변화에 아실화 반응 생체촉매를 사용할 수 있는 가능성에 대해 살펴볼 것이다.

Enzymatic acylations catalyzed by hydrolytic enzymes, along with enzymatic hydrolysis, are established reactions in the synthesis of fine chemicals such as chiral intermediates and polymerizations in the industry. Those reactions have been carried out mostly in organic media due to the thermodynamic limitations. Recently, there have been reports on enzymatic acylations in aqueous media. They have dealt with the elucidation of reaction mechanisms of hydrolases and acyl transferases based on their X-ray structures, homology comparison of the two kinds of enzymes, substrate engineering of acyl donors and computational design of acyl transferases for enzymatic acylations in aqueous media. Enzymatic acylations play an important role in the combinatorial synthesis of natural products such as polyketides and nonribosomal peptides. In this review, the historic developments of enzymatic acylations and industrial examples are described briefly. In addition, recent developments of enzymatic acylations in the modification of natural products and their prospects will be discussed.

키워드

참고문헌

  1. Faber, K., "Biotransformations in Organic Chemistry," Springer, 1997.
  2. Roberts, S. M., "Preparative Biotransformations : the Employment of Enzymes and Whole-cells in Synthetic Organic Chemistry," J. Chem. Soc., Perkin Trans. 1, 157-170(1998).
  3. Turner, N. J. and O'Reilly, E., "Biocatalytic Retrosynthesis," Nature Chem. Biol., 9, 285-8(2013). https://doi.org/10.1038/nchembio.1235
  4. Liese, A., Seelback, K. and Wandrey, C., Industrial Biotransformations, Wiley-VCH, Weinheim, 2006.
  5. Strohmeier, G. A., Pichler, H., May, O. and Gruber-Khadjawi, M., "Application of Designed Enzymes in Organic Synthesis," Chem. Rev., 111, 4141-4164(2011). https://doi.org/10.1021/cr100386u
  6. Schmid, A., Dordick, J. S., Hauer, B., Kiener, Wubbolts, A. M. and Witholt, B., "Industrial Biocatalysis Today and Tomorrow," Nature, 409, 258-268(2001). https://doi.org/10.1038/35051736
  7. Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S., Moore, J. C. and Robins, K., "Engineering the Third Wave of Biocatalysis," Nature, 485, 185-194(2012). https://doi.org/10.1038/nature11117
  8. Park, D. and Lee, J., "Biological Conversion of Methane to Methanol," Korean J. Chem. Eng., 30(5), 977-987(2013). https://doi.org/10.1007/s11814-013-0060-5
  9. Min, E.-J. and Lee, E.-S., "Energy Consumption of Biodiesel Production Process by Supercritical and Immobilized Lipase Method," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50(2), 257-263(2012). https://doi.org/10.9713/kcer.2012.50.2.257
  10. McLachlan, M. J., Sullivan, R. P. and Zhao, H., "Directed Enzyme Evolution and High-Throughput Screening in Directed Enzyme Evolution and High-Throughput Screening," in Biocatalysis for the Pharmaceutical Industry : Discovery, Development, and Manufacturing, eds. Tao, G.-Q. Lin, and A. L., Ch. 3, 45-64 John Wiley & Sons(2009).
  11. Boersma, Y. L., Droge, M. J. and Quax, W. J., "Selection Strategies for Improved Biocatalysts," FEBS J., 274, 2181-2195(2007). https://doi.org/10.1111/j.1742-4658.2007.05782.x
  12. Wang, M., Si, T. and Huimin, Z., "Biocatalyst Development by Directed Evolution," Biores. Technol., 115, 117-125(2012). https://doi.org/10.1016/j.biortech.2012.01.054
  13. Quin, M. B. and Schmidt-Dannert, C., ""Engineering of Biocatalysts: from Evolution to Creation," ACS Catal., 11017-1021(2011).
  14. Patel, R. N., "Synthesis of Chiral Pharmaceutical Intermediates by Biocatalysis," Coord. Chem. Rev., 252, 659-701(2008). https://doi.org/10.1016/j.ccr.2007.10.031
  15. Zaks, A. and Klibanov, A. M., "Enzymatic Catalysis in Organic Media at $100^{\circ}C$," Science, 224, 1249-1251(1984). https://doi.org/10.1126/science.6729453
  16. Zaks, A. and Klibanov, A. M., "Enzyme Catalyzed Processes in Organic Solvents," Proc. Natl. Acad. Sci. USA, 82, 3192-3196 (1985). https://doi.org/10.1073/pnas.82.10.3192
  17. Riva, S., Chopineau, J., Kieboom, A. P. G. and Klibanov, A. M., "Protease-catalyzed Regioselective Esterification of Sugars and Related Compounds in Anhydrous Dimethylformamide," J. Am. Chem. Soc., 110, 584-589(1988). https://doi.org/10.1021/ja00210a045
  18. Takashi Kobayashi, Lipase-catalyzed syntheses of sugar esters in non-aqueous media, Biotechnol. Lett., 33(10), 1911-1919(2011). https://doi.org/10.1007/s10529-011-0663-z
  19. Paravidino, M. and Hanefeld, U., "Enzymatic Acylation: Assessing the Greenness of Different Acyl Donors," Green Chem., 2651-2657(2011).
  20. Sheldon, R. A., "The E Factor: Fifteen Years on," Green Chem., 9, 1273-1283(2007). https://doi.org/10.1039/b713736m
  21. Barbayianni, E. and Kokotos, G., "Biocatalyzed Regio- and Chemoselective Ester Cleavage: Synthesis of Bioactive Molecules," ChemCatChem, 4, 592-608(2012). https://doi.org/10.1002/cctc.201200035
  22. Schoevaart, R. et al., "Chiral Technology: Industrial Biocatalysis with Standard Hydrolytic Bulk Enzymes," Spec. Chem. Mag., 27(8), 38(2007).
  23. Miyazawa, K. and Yoshida, N., "Process for Producing Optically Active $\alpha$-hydroxyesters Using Lipase PS," UP 5248610 (Chisso, Japan) (1993).
  24. Kobayashi, S., "Enzymatic Polymerization," Encyc. Polym. Sci. Tech., 2011.
  25. Kobayashi, S., "Recent Developments in Lipase-catalyzed Synthesis of Polyesters," Macromol. Rapid Comm., 30, 237-266(2009). https://doi.org/10.1002/marc.200800690
  26. OECD Primer, "The Application of Biotechnology to Industrial Sustainability-a Primer," Organization for Economic Co-operation and Development (OECD), 2001.
  27. Binns, F. and Taylor, A., "Enzymatic Synthesis," WO 1994012652 (Baxenden Chemicals, UK) (1994).
  28. Binns, F., Harffey, P., Roberts, S. M. and Taylor, A., "Studies of Lipase-catalyzed Polyesterification of An Unactivated Diacid/diol System," J. Pol. Sci. Pol. Chem. A, 36(12), 2069-2079(1998). https://doi.org/10.1002/(SICI)1099-0518(19980915)36:12<2069::AID-POLA13>3.0.CO;2-4
  29. McCabe, R. W. and Taylor, A., "Synthesis of Novel Polyurethane Polyesters Using the Enzyme Candida antarctica Lipase B," Green Chem., 6, 151-155(2004). https://doi.org/10.1039/b400372c
  30. Gross, R. A., Ganesh, M. and Lu, W., "Enzyme-catalysis Breathes New Life Into Polyester Condensation Polymerizations," Trends Biotechnol., 28, 435-443(2010). https://doi.org/10.1016/j.tibtech.2010.05.004
  31. Park, H. G., Do., J. H. and Chang, H. N., "Regioselective Enzymatic Acylation of Multi-hydroxyl Compounds in Organic Synthesis," Biotech. Bioproc. Eng., 8, 1-8(2003). https://doi.org/10.1007/BF02932891
  32. Park, O. J., Jeon, G. J. and Yang, J. W., "Protease-catalyzed Synthesis of Disaccharide Amino Acid Esters in Organic Media," Enz. Microb. Technol., 25, 455-462(1999). https://doi.org/10.1016/S0141-0229(99)00040-X
  33. Park, O. J., Kim, D. Y. and Dordick, J. S., "Enzyme-catalyzed Synthesis of Sugar-sontaining Monomers and Linear Polymers," Biotechnol. Bioeng., 70, 208-216(2000). https://doi.org/10.1002/1097-0290(20001020)70:2<208::AID-BIT10>3.0.CO;2-0
  34. John, G., Zhu, G., Li, J. and Dordick, J. S., "Enzymatically Derived Sugar-containing Self-assembled Organogels with Sanostructured Morphologies," Angew. Chem. Int. Ed., 45, 4772-4775(2006). https://doi.org/10.1002/anie.200600989
  35. Jadhav, S. R., Vemula, P. K., Kumar, R., Raghavan, S. R. and John, G., "Sugar-serived Phase-selective Molecular Gelators as Model Solidifiers for Oil Spills," Angew. Chem. Int. Ed., 49, 7695-7698 (2010). https://doi.org/10.1002/anie.201002095
  36. Jiang, Y., Morley, K. L., Schrag, J. D. and Kazlauskas, R. J., "Different Active-site Loop Orientation in Serine Hydrolases Versus Acyltransferases," ChemBioChem, 12, 768-776(2011). https://doi.org/10.1002/cbic.201000693
  37. Brenneis, R. and Baeck, B., "Esterification of Fatty Acids Using Candida antarctica Lipase A in Water-abundant Systems," Biotechnol. Lett., 34, 1459-1463(2012). https://doi.org/10.1007/s10529-012-0928-1
  38. Neang, P. M., Subileau, M., Perrier, V. and Dubreucq, E., "Peculiar Features of Four Enzymes of the CaLA Superfamily in Aqueous Media: Differences in Substrate Specificities and Abilities to Catalyze Alcoholysis," J. Mol. Cat. B: Enz., 94, 36-46(2013). https://doi.org/10.1016/j.molcatb.2013.05.002
  39. Xie, X. and Tang, Y., "Efficient Synthesis of Simvastatin by Use of Whole-cell Biocatalysis," Appl. Environ. Microbiol., 73, 2054-2060(2007). https://doi.org/10.1128/AEM.02820-06
  40. Gao, X., Xie, X., Pashkov, I., Sawaya, M. R., Laidman, J., Zhang, W., Cacho, R., Yeates, T. O. and Tang, Y., "Directed Evolution and Structural Characterization of a Simvastatin Synthase," Chem. Biol., 16, 1064-1074(2009). https://doi.org/10.1016/j.chembiol.2009.09.017
  41. Collier, S., "Commercial Biocatalytic Processes to Simvastatin and Other Molecules," Org. Proc. Res. Dev., Barcelona, Spain, Scientific Update(2010).
  42. Dunn, B. J. and Khosla, C., "Engineering the Acyltransferase Substrate Specificity of Assembly Line Polyketide Synthases," J. R. Soc. Interface, 29 May 2013: 20130297.
  43. Mortison, J. D. and Sherman, D. H., "Frontiers and Opportunities in Chemoenzymatic Synthesis," J. Org. Chem., 75(21), 7041-7051 (2010). https://doi.org/10.1021/jo101124n
  44. Minowa, Y. Araki, M. and Kanehisa, A., "Comprehensive Analysis of Distinctive Polyketide and Nonribosomal Peptide Structural Motifs Encoded in Microbial Genomes," J. Mol. Biol., 368, 1500-1517(2007). https://doi.org/10.1016/j.jmb.2007.02.099
  45. Zhou, H., Xie, X. and Tang, Y., "Engineering Natural Products Using Combinatorial Biosynthesis and Biocatalysis," Curr. Opin. Biotechnol., 19, 590-596(2008). https://doi.org/10.1016/j.copbio.2008.10.012
  46. Chooi, Y. H. and Tang, Y., "Navigating the Fungal Polyketide Chemical Space: from Genes to Molecules," J. Org. Chem., 77, 99339953(2012). https://doi.org/10.1021/jo301592k
  47. Zabala, A, O., Cacho, R, A. and Tang, Y., "Protein Engineering Towards Natural Product Synthesis and Diversification," J. Ind. Microbiol. Biotechnol., 39, 227-241(2012). https://doi.org/10.1007/s10295-011-1044-2
  48. Truman, A. W., Dias, M. V. B., Wu, S., Blundell, T. L., Huang, F. and Spencer, J. B., "Chimeric Glycosyltransferases for the Generation of Hybrid Glycopeptides," Chem. Biol., 16, 676-685(2009). https://doi.org/10.1016/j.chembiol.2009.04.013
  49. Lee, S. Y., Kim, H. U., Park, J. H., Park, J. M. and Kim, T. Y., "Metabolic Engineering of Microorganisms: General Strategies and Drug Production," Drug Discov. Today, 14, 78-88(2009). https://doi.org/10.1016/j.drudis.2008.08.004
  50. Marienhagen, J. and Bott, M., "Metabolic Engineering of Microorganisms for the Synthesis of Plant Natural Products," J. Biotechnol., 163, 166-178(2013). https://doi.org/10.1016/j.jbiotec.2012.06.001
  51. Pickens, L. B., Tang, Y. and Chooi, Y. T., "Metabolic Engineering for the Production of Natural Products," Ann. Rev. Chem. Biomol. Eng., 2, 211-236(2011). https://doi.org/10.1146/annurev-chembioeng-061010-114209
  52. Michels, P. C., Khmelnitsky, Y. L., Dordick, J. S. and Clark, D. S., "Combinatorial Biocatalysis: a Natural Approach to Drug Discovery," Trends Biotechnol., 16(5), 210-215(1998). https://doi.org/10.1016/S0167-7799(98)01190-1
  53. Gonzalez-Sabin, J., Moran-Ramallal, R. and Rebolledo, F., "Regioselective Enzymatic Acylation of Complex Natural Products: Expanding Molecular Diversity," Chem. Soc. Rev., 40, 5321-5335(2011). https://doi.org/10.1039/c1cs15081b
  54. Khmelnitski, Y. L., Budde, C., Arnold, J. M., Usyatinsky, A., Clark, D. S. and Dordick, J. S., "Synthesis of Water Soluble Paclitaxel Derivatives by Enzymatic Acylation," J. Am. Chem. Soc. 119, 11554-11555(1997). https://doi.org/10.1021/ja973103z
  55. Loncaric, C., Merriweather, E. and Walker, K. D., "Profiling a Taxol Pathway 10-acetyltransferase: Assessment of the Specificity and the Production of Baccatin III by in vivo Acetylation in E. coli," Chem. Biol., 13, 309-317(2006). https://doi.org/10.1016/j.chembiol.2006.01.006
  56. Longa, R. M., Lagisetti, C., Coates, R. M. and Croteaua, R. B., "Specificity of the N-benzoyl Transferase Responsible for the Last Step of Taxol Biosynthesis," Arch. Biochem. Biophys., 477(2), 384-389(2008). https://doi.org/10.1016/j.abb.2008.06.021
  57. Nevarez, D. M., Mengistu, Y. A., Nawarathne, I. N. and Walker, K. D., "An N-aroyltransferase of the BAHD Superfamily has Broad Aroyl CoA Specificity in vitro with Analogues of N-dearoylpaclitaxel," J. Am. Chem. Soc., 131(16), 5994-6002(2009). https://doi.org/10.1021/ja900545m
  58. Adamczyk, M., Gebler, J. C. and Mattingly, P. G., "Lipase Mediated Hydrolysis of Rapamycin. 42-hemisuccinate Benzyl and Methyl Esters," Tetrahedron Lett., 35, 1019-1022(1994). https://doi.org/10.1016/S0040-4039(00)79954-0
  59. Storz, T., Gu, J., Wilk, B. and Olsen, E., "Regioselective Lipasecatalyzed Acylation of 41-desmethoxy-rapamycin Without Vinyl Esters," Tetrahededron Lett., 51, 5511-5515(2010). https://doi.org/10.1016/j.tetlet.2010.08.020
  60. Wang, P., Gao, X. Chooi, Y. H., Deng, Z. and Tang, Y., "Genetic Characterization of Enzymes Involved in the Priming Steps of Oxytetracycline Biosynthesis in Streptomyces rimosus," Microbiol., 157(8), 2401-2409(2011). https://doi.org/10.1099/mic.0.048439-0
  61. Pickens, L. B., Kim, W., Wang, P., Zhou, H., Watanabe, K., Gomi, S. and Tang, Y., "Biochemical Analysis of the Biosynthetic Pathway of an Anticancer Tetracycline SF2575," J. Am. Chem. Soc., 131, 17677-17689(2009). https://doi.org/10.1021/ja907852c
  62. Pickens, L. B., Sawaya, M. R., Rasool, H., Pashkov, I., Yeates, T. O. and Tang, Y., "Structural and Biochemical Characterization of the Salicylyl-acyltranferase SsfX3 from a Tetracycline Biosynthetic Pathway," J. Biol. Chem., 286, 41539-41551(2011). https://doi.org/10.1074/jbc.M111.299859
  63. Wang, P., Kim, W., Pickens, L. B., Gao, X. and Tang, Y., "Heterologous Expression and Manipulation of Three Tetracycline Biosynthetic Pathways," Angew. Chem. Int. Ed., 51, 11136-11140 (2012). https://doi.org/10.1002/anie.201205426
  64. Robbel, L. and Marahiel, M. A., "Daptomycin, a Bacterial Lipopeptide Synthesized by a Nonribosomal Machinery," J. Biol. Chem., 285, 27501-27508(2010). https://doi.org/10.1074/jbc.R110.128181
  65. Strieker, M. and Marahiel, M. A., "The Structural Diversity of Acidic Lipopeptide Antibiotics," ChemBioChem, 10, 607-616(2009). https://doi.org/10.1002/cbic.200800546
  66. Boeck, L. D., Fukuda, D. S., Abbott, B. J. and Debono, M., "Deacylation of A21978C, An Acidic Lipopeptide Antibiotic Complex, by Actinoplanes utahensis," J. Antibiot., 41, 1085-1092 (1988). https://doi.org/10.7164/antibiotics.41.1085
  67. Debono, M., Abbott, B. J., Molloy, R. M. et al., "Enzymatic and Chemical Modifications of Lipopeptide Antibiotic A21978C: the Synthesis and Evaluation of Daptomycin (LY146032)," J. Antibiot., 41, 1093-1105(1988). https://doi.org/10.7164/antibiotics.41.1093
  68. Shao, L., Li, J., Liu, A., Chang, Q., Lin, H. and Chen, D., "Efficient Bioconversion of Echinocandin B to Its Nucleus by Overexpression of Deacylase Genes in Different Host Strains," Appl. Environ. Microb., 79(4), 1126-1133(2012).
  69. D'Costa, V. M., Mukhtar, T. A., Patel, T., Koteva, K., Waglechner, N., Hughes, D. W., Wright, G. D. and De Pascale G., "Inactivation of the Lipopeptide Antibiotic Daptomycin by Hydrolytic Mechanisms," Antimicrob. Agents Chemo., 56(2), 757-764(2012). https://doi.org/10.1128/AAC.05441-11
  70. Grunewald, J., Sieber, S. A., Mahlert, C., Linne, U. and Marahiel, M. A., "Synthesis and Derivatization of Daptomycin: a Chemoenzymatic Route to Acidic Lipopeptide Antibiotics," J. Am. Chem. Soc., 126(51), 17025-17031(2004). https://doi.org/10.1021/ja045455t
  71. Kopp, F., Grunewald, J., Mahlert, C. and Marahiel, M. A., "Chemoenzymatic Design of Acidic Lipopeptide Hybrids: New Insights Into the Structure-activity Relationship of Daptomycin and A54145," Biochem., 45, 10474-10481(2006). https://doi.org/10.1021/bi0609422
  72. Miao, V., Coeffet-Le Gal, M. F., Nguyen, K., Brian, P., Penn, J., Whiting, A., Steele, J., Kau, D., Martin, S., Ford, R., Gibson, T., Bouchard, M., Wrigley, S. K. and Baltz, R. H., "Genetic Engineering in Streptomyces roseosporus to Produce Hybrid Lipopeptide Antibiotics," Chem. Biol., 13(3), 269-276(2006). https://doi.org/10.1016/j.chembiol.2005.12.012
  73. Nguyen, K. T., Ritz, D., Gu, J. Q., et al. Combinatorial Biosynthesis of Novel Antibiotics Related to Daptomycin," Proc. Natl. Acad. Sci., 103, 17462-17467(2006). https://doi.org/10.1073/pnas.0608589103
  74. Dubois, E. A. and Cohen, A. F., "Retapamulin," Br. J. Clin. Pharmacol., 69, 2-3(2010). https://doi.org/10.1111/j.1365-2125.2009.03505.x
  75. De Mattos-Shipley, K., Hayes, P., Collins, C., Kilaru, S., Hartley, A., Foster, G. D. and Bailey, A. M., "Biobased Antibiotics from Basidios: a Case Study on the Identification and Manipulation of a Gene Cluster Involved in Pleuromutilin Biosynthesis from Clitopilus passeckerianus," Proc. Of the 7th Int. Conf. Mushroom Biol. Mushroom Prod. (ICMBMP7), 224-231(2011).
  76. Honda, K., Kataoka, M. and Shimizu, S., "Enzymatic Preparation of D-beta-acetylthioisobutyric Acid and Cetraxate Hydrochloride Using a Stereo- and/or Regioselective Hydrolase," Appl. Microbiol. Biotechnol., 60, 288-292(2002). https://doi.org/10.1007/s00253-002-1116-3
  77. Honda, K., Sakamoto, K., Kita, S., Kataoka, M. and Shimizu, S., "Biocatalytic Deprotection of a Cetraxate Ester by Microbacterium sp. Strain 7-1W Cells," Biosci. Biotechnol. Biochem., 67, 192-194 (2003). https://doi.org/10.1271/bbb.67.192
  78. Kopp, F. and Marahiel, M. A., "Macrocyclization Strategies in Polyketide and Nonribosomal Peptide Biosynthesis," Nat. Prod. Rep. 24, 735-749(2007). https://doi.org/10.1039/b613652b
  79. Wang, M., Zhou, H., Wirz, M., Tang, Y. and Boddy, C. N., "A Thioesterase from An Iterative Fungal Polyketide Synthase Shows Macrocyclization and Cross Coupling Activity and May Play a Role in Controlling Iterative Cycling Through Product Offloading," Biochem., 48(27), 6288-6290(2009). https://doi.org/10.1021/bi9009049
  80. Pinto, A., Wang, M., Horsman, M. and Boddy, C. N., "6-Deoxyerythronolide B Synthase Thioesterase-catalyzed Macrocyclization is Highly Stereoselective," Org. Lett., 14(9), 2278-81(2012). https://doi.org/10.1021/ol300707j
  81. Walsh, C. T., "Combinatorial Biosynthesis of Antibiotics: Challenges and Opportunities," ChemBioChem, 3, 125-134(2002).
  82. Kiss, G., Celebi-Olcum, N., Moretti, R., Baker, D. and Houk, K. N., "Computational Enzyme Design," Angew. Chem. Int. Ed., 52, 2-28(2013).
  83. Otten, L. et al., "Enzyme Engineering for Enantioselectivity: from Trial-and-error to Rational Design?," Trends Biotechnol., 28, 46-54(2010). https://doi.org/10.1016/j.tibtech.2009.10.001
  84. Planson, A. G., Carbonell, P., Grigoras, I. and Faulon, J. L., "Engineering Antibiotic Production and Overcoming Bacterial Resistance," Biotechnol. J., 6, 812-825 (2011). https://doi.org/10.1002/biot.201100085
  85. Pirie, C. M., De Mey, M., Prather, K. L. J. and Ajikumar, P. K., "Integrating the Protein and Metabolic Engineering Toolkits for Next-generation Chemical Biosynthesis," ACS Chem. Biol., 8(4), 662-672(2013). https://doi.org/10.1021/cb300634b