DOI QR코드

DOI QR Code

SVM-Guided Biplot of Observations and Variables

  • Received : 2013.10.11
  • Accepted : 2013.11.05
  • Published : 2013.11.30

Abstract

We consider support vector machines(SVM) to predict Y with p numerical variables $X_1$, ${\ldots}$, $X_p$. This paper aims to build a biplot of p explanatory variables, in which the first dimension indicates the direction of SVM classification and/or regression fits. We use the geometric scheme of kernel principal component analysis adapted to map n observations on the two-dimensional projection plane of which one axis is determined by a SVM model a priori.

Keywords

Acknowledgement

Supported by : Korea University

References

  1. Gabriel, K. R. (1971). The biplot display of matrices with the application to principal component analysis, Biometrika, 58, 453-467. https://doi.org/10.1093/biomet/58.3.453
  2. Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning, Second Edition, Springer, New York.
  3. Huh, M. H. (2013). Arrow diagrams for kernel principal component analysis, Communications for Statistical Applications and Methods, 20, 175-184. https://doi.org/10.5351/CSAM.2013.20.3.175
  4. Huh, M. H. and Lee, Y. G. (2013). Biplots of multivariate data guided by linear and/or logistic regression, Communications for Statistical Applications and Methods, 20, 129-136. https://doi.org/10.5351/CSAM.2013.20.2.129
  5. Karatzoglou, A., Smola, A., Hornik, K. and Zeileis, A. (2004). 'kernlab' - An S4 package for Kernel methods in R, Journal of Statistical Software, 11, 1-20.
  6. SAS Inc. (2009). SAS/STAT V9.2 User Guide, Second Edition, Cary, NC.
  7. Scholkopf, B., Smola, A. and Muller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10, 1299-1319. https://doi.org/10.1162/089976698300017467

Cited by

  1. Global and Local Views of the Hilbert Space Associated to Gaussian Kernel vol.21, pp.4, 2014, https://doi.org/10.5351/CSAM.2014.21.4.317