Acknowledgement
Supported by : Korea University
References
- Gabriel, K. R. (1971). The biplot display of matrices with the application to principal component analysis, Biometrika, 58, 453-467. https://doi.org/10.1093/biomet/58.3.453
- Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning, Second Edition, Springer, New York.
- Huh, M. H. (2013). Arrow diagrams for kernel principal component analysis, Communications for Statistical Applications and Methods, 20, 175-184. https://doi.org/10.5351/CSAM.2013.20.3.175
- Huh, M. H. and Lee, Y. G. (2013). Biplots of multivariate data guided by linear and/or logistic regression, Communications for Statistical Applications and Methods, 20, 129-136. https://doi.org/10.5351/CSAM.2013.20.2.129
- Karatzoglou, A., Smola, A., Hornik, K. and Zeileis, A. (2004). 'kernlab' - An S4 package for Kernel methods in R, Journal of Statistical Software, 11, 1-20.
- SAS Inc. (2009). SAS/STAT V9.2 User Guide, Second Edition, Cary, NC.
- Scholkopf, B., Smola, A. and Muller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10, 1299-1319. https://doi.org/10.1162/089976698300017467
Cited by
- Global and Local Views of the Hilbert Space Associated to Gaussian Kernel vol.21, pp.4, 2014, https://doi.org/10.5351/CSAM.2014.21.4.317