DOI QR코드

DOI QR Code

Nitric Oxide and Hydrogen Peroxide Production are Involved in Systemic Drought Tolerance Induced by 2R,3R-Butanediol in Arabidopsis thaliana

  • Cho, Song-Mi (Department of Floriculture, Chunnam Techno University) ;
  • Kim, Yong Hwan (Korea Institute of Planning & Evaluation for Technology on Food, Agriculture, Forestry & Fisheries) ;
  • Anderson, Anne J. (Department of Biology, Utah State University) ;
  • Kim, Young Cheol (Institute of Environmental-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
  • Received : 2013.07.17
  • Accepted : 2013.08.31
  • Published : 2013.12.01

Abstract

2R,3R-Butanediol, a volatile compound produced by certain rhizobacteria, is involved in induced drought tolerance in Arabidopsis thaliana through mechanisms involving stomatal closure. In this study, we examined the involvement of nitric oxide and hydrogen peroxide in induced drought tolerance, because these are signaling agents in drought stress responses mediated by abscisic acid (ABA). Fluorescence-based assays showed that systemic nitric oxide and hydrogen peroxide production was induced by 2R,3R-butanediol and correlated with expression of genes encoding nitrate reductase and nitric oxide synthase. Co-treatment of 2R,3R-butanediol with an inhibitor of nitrate reductase or an inhibitor of nitric oxide synthase lowered nitric oxide production and lessened induced drought tolerance. Increases in hydrogen peroxide were negated by co-treatment of 2R,3R-butanediol with inhibitors of NADPH oxidase, or peroxidase. These findings support the volatile 2R,3R-butanediol synthesized by certain rhizobacteria is an active player in induction of drought tolerance through mechanisms involving nitric oxide and hydrogen peroxide production.

Keywords

References

  1. Anderson, J. P., Badruzsufari, E., Schnek, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., Maclean, D. J., Ebert, P. R. and Kazan, K. 2004. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460-3479. https://doi.org/10.1105/tpc.104.025833
  2. Bae, H., Sicher, R. C., Kim, M. S., Kim, S.-H., Strem, M. D., Melnick, R. L. and Bailey, B. A. 2009. The beneficial endophyte Trichoderma hamatum isolate DIS219b promotes growth and delays the onset of the drought response in Theobroma cacao. J. Exp. Bot. 60: 3279-3295. https://doi.org/10.1093/jxb/erp165
  3. Bright, J., Desikan, R., Hancock, J. T., Weir, I. S. and Neil, S. J. 2006. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on $H_2O_2$ synthesis. Plant J. 45:113-122. https://doi.org/10.1111/j.1365-313X.2005.02615.x
  4. Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., Cho, B. H., Yang, K.-Y., Ryu, C.-M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:1067-1075. https://doi.org/10.1094/MPMI-21-8-1067
  5. Cho, S. M., Kang, B. R., Kim, J. J. and Kim, Y. C. 2012. Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure. Plant Pathol. J. 28:202−206. https://doi.org/10.5423/PPJ.2012.28.2.202
  6. Cho, S. M., Kang, B. R. and Kim, Y. C. 2013. Transcriptome analysis of induced systemic drought tolerance elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana. Plant Pathol. J. 29:209−220. https://doi.org/10.5423/PPJ.SI.07.2012.0103
  7. Cho, S. M., Kim, S. H., Kim, Y. C., Yang, K. Y., Kim, K. S., Choi, Y. S. and Cho, B. H. 2010. Galactinol is involved in induced systemic resistance against bacterial infection and environmental stresses. Kor. J. Plant Res. 23:248-255.
  8. Cho, S. M., Park, J. Y., Han, S. H., Anderson, A. J., Yang, K. Y., Gardener, B. M. and Kim, Y. C. 2011. Identification and transcriptional analysis of priming genes in Arabidopsis thaliana induced by root colonization with Pseudomonas chlororaphis O6. Plant Pathol. J. 27:272-279. https://doi.org/10.5423/PPJ.2011.27.3.272
  9. Desikan, R., Last, K., Harret-Williams, R., Tagliavia, C., Harter, K., Hooley, R., Hancock, J. T. and Neil, S. J. 2006. Ethyleneinduced stomatal closure in Arabidopsis occurs via atrbohFmediated hydrogen peroxide synthesis. Plant J. 47:907-917. https://doi.org/10.1111/j.1365-313X.2006.02842.x
  10. Figueiredo, M. V. B., Burity, H., Martinez, C. R. and Chanway, C. P. 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Eco. 40:182-188. https://doi.org/10.1016/j.apsoil.2008.04.005
  11. Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. H., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. GacS-dependent production of 2R,3Rbutanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant-Microbe Interact. 19:924-930. https://doi.org/10.1094/MPMI-19-0924
  12. Kim, Y. C., Glick, B. R., Bashan, Y. and Ryu, C.-M. 2012. Enhancement of plant drought tolerance by microbes. Aroca, R. (ed.), Plant responses to drought stress, Springer-Verlag, Berlin, Heidelberg, pp 383-413.
  13. Kumar, A. S., Lakshmanan, V., Caplan, J. L., Powell, D., Czymmek, K. J., Levia, D. F. and Bais, H. P. 2012. Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J. 72:694-706. https://doi.org/10.1111/j.1365-313X.2012.05116.x
  14. Lee, S. C. and Luan, S. 2012. ABA signal transduction pathway at the crossroad of biotic and abiotic stress response. Plant Cell Environ. 35:53-60. https://doi.org/10.1111/j.1365-3040.2011.02426.x
  15. Leung, J. and Giraudat, J. 1998. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:199-222. https://doi.org/10.1146/annurev.arplant.49.1.199
  16. Mayak, S., Tirosh, T. and Glick, B. R. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166:525-530. https://doi.org/10.1016/j.plantsci.2003.10.025
  17. Mattson, M. P. 2008. Hormesis defined. Ageing Res Rev. 7:1-7. https://doi.org/10.1016/j.arr.2007.08.007
  18. Melloto, M., Underwood, W., Koczan, J., Nomura, K. and He, S. H. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126:969-980. https://doi.org/10.1016/j.cell.2006.06.054
  19. Mori, I. C., Pinontoan, R., Kawano, T. and Muto, S. 2001. Involvement of superoxide generation in salicylic acidinduced stomatal closure in Vicia faba. Plant Cell Physiol. 42:1383-1388. https://doi.org/10.1093/pcp/pce176
  20. Mosher, S., Moeder, W., Nishimura, N., Kikumaru, Y., Joo, S.-H., Urquhart, W., Klessig, D. F., Kim, S.-K., Nambara, E. and Yoshioka, K. 2010. The lesion-mimic mutant cpr22 shows alterations in abscisic acid signaling and abscisic acid insensitivity in a salicylic acid-depedent manner. Plant Physiol. 152:1901-1913. https://doi.org/10.1104/pp.109.152603
  21. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  22. Neill, S., Barros, R., Bright, J., Desikan, R., Hancock, J., Harrision, J., Morris, P., Ribeiro, D. and Wilson, I. 2008. Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 59:165-176. https://doi.org/10.1093/jxb/erm293
  23. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Soc. USA. 100:4927-4932. https://doi.org/10.1073/pnas.0730845100
  24. Schroeder, J. I., Kwak, J. M. and Allen, G. J. 2001. Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature 410:327-330. https://doi.org/10.1038/35066500
  25. Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3:217-223. https://doi.org/10.1016/S1369-5266(00)80068-0
  26. Timmusk, S. and Wagner, E. G. H. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact. 12:951-959. https://doi.org/10.1094/MPMI.1999.12.11.951
  27. Underwood, W., Melloto, M. and He, S. H. 2007. Role of plant stomata in bacterial invasion. Cell Microbiol. 9:1621-1629. https://doi.org/10.1111/j.1462-5822.2007.00938.x
  28. Wetzker, R. and Rubio, I. 2012. Hormetic signaling patterns. Dose-Response 10:83-90. https://doi.org/10.2203/dose-response.11-012.Wetzker
  29. Yang, J., Kloepper, J. W. and Ryu, C.-M. 2010. Rhizosphere bacteria help plants tolerance abiotic stress. Trends Plant Sci. 46:1-3.
  30. Zhang, H., Murzello, C., Sun, Y., Kim, M.-S., Xie, X., Jeter, R. M., Zak, J. C., Dowd, S. E. and Pare, P. W. 2010. Choline and osmotic-stress tolerance induced in Arabiodosis by the soil microbe Bacillus subtilis (GB03). Mol. Plant-Microbe Interact. 23:1097-1104. https://doi.org/10.1094/MPMI-23-8-1097

Cited by

  1. A Root-Colonizing Pseudomonad Lessens Stress Responses in Wheat Imposed by CuO Nanoparticles vol.11, pp.10, 2016, https://doi.org/10.1371/journal.pone.0164635
  2. Enhanced Iron and Selenium Uptake in Plants by Volatile Emissions of Bacillus amyloliquefaciens (BF06) vol.7, pp.1, 2017, https://doi.org/10.3390/app7010085
  3. The effects of bacterial volatile emissions on plant abiotic stress tolerance vol.6, 2015, https://doi.org/10.3389/fpls.2015.00774
  4. Rhizosphere pseudomonads as probiotics improving plant health vol.19, pp.10, 2018, https://doi.org/10.1111/mpp.12693
  5. -pumping pyrophosphatase in pepper plants pp.14622912, 2018, https://doi.org/10.1111/1462-2920.14272