DOI QR코드

DOI QR Code

Effectiveness of Enzymatic Hydrolysis on Polyamide Fabric

  • Kim, Hye Rim (Dept. of Clothing & Textiles, Sookmyung Women's University) ;
  • Seo, Hye Young (Dept. of Clothing & Textiles, Sookmyung Women's University) ;
  • Song, Ah Reum (Dept. of Clothing & Textiles, Sookmyung Women's University)
  • Received : 2013.08.19
  • Accepted : 2013.10.17
  • Published : 2013.10.31

Abstract

We compared the effectiveness of amidase (amano acylase, AA) and an endopeptidase, (trypsin, TR) in modifying the hydrophobicity of polyamide fabric. We evaluated the number of amino groups released into the reaction mixture in order to optimize the treatment conditions. We found that a large number of amino groups were released into the reaction mixture due to the cleavage of amide bonds by AA hydrolysis; however, the TR hydrolysis exhibited a relatively lower activity compared to AA hydrolysis. In AA and TR hydrolysis, significant differences were observed in the K/S values and moisture regain. Amide bonds in polyamide fabric were hydrolyzed by AA hydrolysis effectively. Compared to TR, AA formed more hydrolysis product (amino groups) on the fabric surface. Thus, the hydrophobicity of polyamide fabric was modified using AA hydrolysis (as verified by the wettability test) without any deterioration of fiber strength.

Keywords

References

  1. Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry, 27(6), 1256 -1262. https://doi.org/10.1021/jf60226a042
  2. Almansa, E., Heumann, S., Eberl, A., Kaufmann, F., Cavaco-Paulo, A., & Gubitz, G. M. (2008). Surface hydrolysis of polyamide with a new polyamidase from beauveria brongniartii. Biocatalysis and Biotransformation, 26(5), 371-377. https://doi.org/10.1080/10242420802323433
  3. Banks, J. W., & O'Hagan, D. (2000). The enzymatic resolution of an $\alpha$-fluoroamide by an acylase. Journal of Flourine Chemistry, 102(1-2), 235-238. https://doi.org/10.1016/S0022-1139(99)00284-5
  4. Cavaco-Paulo, A., & Gubitz, M. (2003). Textile processing with enzymes. New York: Textile institute.
  5. Choudhury, A. K. R. (2006). Textile preparation and dyeing. New Hampshire: Science publishers.
  6. Gadamasetti, K., & Braish, T. (Eds.). (2007). Process chemistry in the pharmaceutical industry, Volume 2: Challenges in as ever changing climate. New York: CRC Press.
  7. Garcia-Castineiras, S., & Miranda-Rivera, M. N. (1983). Loss of free amino groups in the water-insoluble fraction of nuclear senile cataracts. Investigative Ophthalmology & Visual Science, 24(9), 1181-1187.
  8. Gubitz, G. M., & Cavaco-Paulo, A. (2008). Enzymes go big: Surface hydrolysis and functionalisation of synthetic polymers. Trends in Biotechnology, 26(1), 32-38. https://doi.org/10.1016/j.tibtech.2007.10.003
  9. Heumann, S., Eberl, A., Fischer-Colbrie, G., Pobeheim, H., Kaufmann, F., Ribitsch, D., Cavaco-Paulo, A., & Guebtiz, G. M. (2009). A novel aryl acylamidase from nocardia farcinica hydrolyses polyamide. Biotechnology and Bioengineering, 102(4), 1003-1011. https://doi.org/10.1002/bit.22139
  10. Heumann, S., Eberl, A., Pobeheim, H., Liebminger, S., Fischer-Colbrie, G., Almansa, E., Cavaco-Paulo, A., & Gubitz, G. M. (2006). New model substrates for enzymes hydrolyzing polyethyleneterephthalate and polyamide fibres. Journal of Biochemical and Biophysical Methods, 69(1-2), 89-99. https://doi.org/10.1016/j.jbbm.2006.02.005
  11. Kaynak, H. K., & Babaarslan, O. (2012). Polyester microfilament woven fabrics. In H. Y. Jeon (Ed.), Woven fabrics (pp. 155-178). Croatia: InTech.
  12. Kim, H. R., & Seo, H. Y. (2013). Enzymatic hydrolysis of polyamide fabrics by using acylse. Textile Research Journal, 83(11), 1181-1189. https://doi.org/10.1177/0040517512471747
  13. Kim, H. R., & Song, W. S. (2006). Lipase treatment polyester fabrics. Fibers and Polymers, 7(4), 339-343. https://doi.org/10.1007/BF02875764
  14. Klun, U., Friedrich, J., & Krzan, A. (2003). Polyamide-6 fibre degradation by a lignolytic fungus. Polymer Degradation and. Stability, 79(1), 99-104. https://doi.org/10.1016/S0141-3910(02)00260-4
  15. Liljeblad, A., & Kanerva, L. T. (2006). Biocatalysis as a profound tool in the preparation of highly enantiopure $\beta$-amino acids. Tetrahedron, 62(25), 5831-5854. https://doi.org/10.1016/j.tet.2006.03.109
  16. Liljeblad, A., Lindborg, J., & Kanerva, L. T. (2000). Acylase I in the alcoholysis of $\alpha$-substituted dicarboxylic acid esters and derivatives: Enantio- and regioselectivity. Tetrahedron-Ashymmetry, 11(19), 3957-3966. https://doi.org/10.1016/S0957-4166(00)00346-3
  17. Miettinen-Oinonen, A., Puolakka, A., & Buchert, J. (2008). Method for modifying polyamide, U.S. Patent No. 028-9120 A1. Washington, DC: U.S. Patent and trademark Office.
  18. Ogulata, R. T. (2006). Air permeability of woven fabrics. Journal of Textile and apparel, Technology and management, 5(2), 1-10.
  19. Parvinzadeh, M., Assefipour, R., & Kiumarsi, A. (2009). Biohydrolysis of nylon 6,6 fiber with different proteolytic enzymes. Polymer Degradation and Stability, 94(8), 1197-1205. https://doi.org/10.1016/j.polymdegradstab.2009.04.017
  20. Perin, Z., Stana-Kleinschek, K., Sfiligoj-Smole, M., Kre, T., & Ribitsch, V. (2004). Determining the surface free energy of cellulose materials with the powder contact angle method. Textile Research Journal, 74(1), 55-62. https://doi.org/10.1177/004051750407400110
  21. Proctor, M. R., Taylor, E. J., Nurizzo, D., Turkenburg, J. P., Lloyd, R. M., Vardakou, M., Davies, G. J., & Gilbert, H. J. (2005). Tailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A. Proceedings of the National Academy of Sciences, 102(8), 2697-2702. https://doi.org/10.1073/pnas.0500051102
  22. Sashidhar, R. B., Capoor, A. K., & Ramana, D. (1994). Quantitation of $\alpha$-amino group using amino acids as reference standards by trinitrobenzene sulfonic acid: A simple spectrophotometric method for the estimation of hapten to carrier protein ratio. Journal of Immunological Methods, 167(1-2), 121-127. https://doi.org/10.1016/0022-1759(94)90081-7
  23. Silva, C., & Cavaco-Paulo, A. (2004) Monitoring biotransformations in polyamide fibres. Biocatalysis and Biotransformation, 22(5-6), 357-360. https://doi.org/10.1080/10242420400025828
  24. Silva, C., Cavaco-Paulo, A., & Nierstrasz, V. A. (2010). Enzymatic hydrolysis and modification of core polymer fibres for textile and other applications. In N. A. Nierstrasz & A. Cavaco-Paulo (Eds.), Woodhead publishing series in textiles: Number 107. Advances in textile biotechnology (pp. 77-97). Cambridge: The Textile Institute.
  25. Silva, C. M., Carneiro, F., O'neill, A., Fonseca, L. P., Cabral, J. S. M., Guebitz, G., & Cavaco-Paulo, A. (2005). Cutinase- A new tool for biomodification of synthetic fibers. Journal of Polymer Science Part A: Polymer Chemistry, 43(11), 2448-2450. https://doi.org/10.1002/pola.20684
  26. Simile, C. B. (2004). Critical evaluation of wicking in performance fabrics. Unpublished master's thesis, Georgia Institute of Technology, Atlanta.
  27. Song, A. R., Kim, H. R., & Song, W. S. (2012). Optimization of enzymatic treatment of polyamide fabrics by bromelain. Fibers and Polymers, 13(3), 282-288. https://doi.org/10.1007/s12221-012-0282-x
  28. Spellman, D., McEvoy, E., O'Cuinn, G., & FitzGerald, R. J. (2003). Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal 13(6), 447-453. https://doi.org/10.1016/S0958-6946(03)00053-0
  29. Youshko, M. I., Langen, L. M., Sheldon, R. A., & Svedas, V. K. (2004). Application of aminoacylase I to the enantioselective resolution of $\alpha$-amino acid esters and amides. Tetrahedron-Ashymmetry, 15(12), 1933-1936. https://doi.org/10.1016/j.tetasy.2004.05.018

Cited by

  1. Effect of enzymatic hydrolysis on developing support of polyamide woven fabric for enzyme immobilization pp.1746-7748, 2019, https://doi.org/10.1177/0040517518767148