DOI QR코드

DOI QR Code

Synthesis of the Carbon Nano/micro Coils Applicable to the Catalyst Support to Hold the Tiny Catalyst Grain

매우 작은 크기의 촉매 알갱이를 지지하기 위한 촉매 지지대용 탄소 나노/마이크로 코일의 합성

  • Park, Chan-Ho (Department of Engineering in Energy and Applied Chemistry, Silla University) ;
  • Kim, Sung-Hoon (Department of Engineering in Energy and Applied Chemistry, Silla University)
  • 박찬호 (신라대학교 에너지응용화학과) ;
  • 김성훈 (신라대학교 에너지응용화학과)
  • Received : 2013.09.03
  • Accepted : 2013.10.23
  • Published : 2013.11.30

Abstract

Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. The Ni layer on the $SiO_2$ substrate was used as a catalyst for the formation of the carbon coils. The characteristics (formation densities, morphologies, and geometries) of the as-grown carbon coils on the substrate with or without the $H_2$ plasma pretreatment process were investigated. By the relatively short time (1 minute) $H_2$ plasma pretreatment on the Ni catalyst layered-substrate prior to the carbon coils synthesis reaction, the dominant formation of the carbon microcoils on the substrate could be achieved. After the relatively long time (30 minutes) $H_2$ plasma pretreatment process, on the other hand, we could obtain the noble-shaped geometrical nanostructures, namely the formation of the numerous carbon nanocoils along the growth of the carbon microcoils. This noble-shaped geometrical nanostructure seemed to play a promising role as the good catalyst support for holding the very tiny Ni catalyst grains.

아세틸렌과 수소기체를 원료기체로 하고 육불화황을 첨가기체로 하여 열화학 기상 증착하에서 탄소코일을 합성하였다. 이 때 산화실리콘 기판위의 니켈막을 탄소코일 성장의 촉매로 사용하였다. 성장된 탄소코일의 생성밀도, 형상, 기하구조 등을 수소 플라즈마 전처리의 유무에 따라 조사하였다. 상대적으로 짧은 시간(1분)의 수소 플라즈마 전처리는 탄소 마이크로 코일을 우세하게 성장시켰다. 긴 시간(30분)동안의 수소플라즈마 전처리는 탄소마이크로 성장 축을 따라 수많은 탄소 나노코일이 들어붙어 있는 특이한 구조를 보였다. 이 특이한 구조는 매우 작은 니켈 촉매의 알갱이를 효과적으로 지지할 수 있는 촉매 지지대로서의 역할을 할 수 있을 것으로 예견되었다.

Keywords

References

  1. J. H. Ming and W. C. Lin, Nanotechnology 20, 0256081 (2009).
  2. A. K. Geim and K. S. Novoselov, Nat. Mater 6, 183 (2007). https://doi.org/10.1038/nmat1849
  3. Z. L. Tsakadze, I. Levchenko, K. Ostrikov, and S. Xu, Carbon 45 2022 (2007). https://doi.org/10.1016/j.carbon.2007.05.030
  4. D. Fejes and K. Hernadi, Materials 3, 2618 (2010). https://doi.org/10.3390/ma3042618
  5. L. J. Pan, T. Hayashida, M. Zhang and Y. Nakayama, Jpn. J. Appl. Phys. 40, L235 (2001). https://doi.org/10.1143/JJAP.40.L235
  6. S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and J. B. Nagy, Science 265, 635 (1994). https://doi.org/10.1126/science.265.5172.635
  7. S. Hokushin, L. J. Pan, Y. Konishi, H. Tanaka, and Y. Nakayama, Jpn. J. Appl. Phys. 46, L565 (2007). https://doi.org/10.1143/JJAP.46.L565
  8. C. W. Xu, L. Q. Cheng, P. K. Shen, and Y. L. Liu, Electrochem. Commun. 9, 997 (2007). https://doi.org/10.1016/j.elecom.2006.12.003
  9. D. S. Yuan, S. Z. Tan, Y. L. Liu, J. H. Zeng, and F. P. Hu, Carbon 46, 531 (2008). https://doi.org/10.1016/j.carbon.2008.01.004
  10. E. Antolini, Appl. Catal. B 88, 1 (2009). https://doi.org/10.1016/j.apcatb.2008.09.030
  11. V. Hacker, E. Wallnofer, W. Baumgartner, T. Schaffer, J. O. Besenhard, and H. Schrottner, Electrochem. Commun. 7, 377 (2005). https://doi.org/10.1016/j.elecom.2005.02.009
  12. M. Tsuji, M. Kubokawa, R. Yano, N. Miyamae, T. Tsuji, M. S. Jun, S. Hong, S. Lim, S. H. Yoon, and I. Mochida, Langmuir 23, 387 (2007). https://doi.org/10.1021/la062223u
  13. C. C. Chien and K. T. Jeng, Mater. Chem. Phys. 99, 80 (2006). https://doi.org/10.1016/j.matchemphys.2005.09.080
  14. S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi, and H. Iwanaga, Carbon 34, 289 (1996). https://doi.org/10.1016/0008-6223(95)00169-7
  15. S. Yang, X. Chen, and S. Motojima, Carbon 44, 3352 (2004).
  16. X. Chen and S. Motojima, Carbon 37, 1817 (1999). https://doi.org/10.1016/S0008-6223(99)00054-8
  17. S. H. Kim, J. Korean Vac. Soc. 20, 374 (2011). https://doi.org/10.5757/JKVS.2011.20.5.374
  18. S. H. Kim, J. Korean Vac. Soc. 21, 48 (2012). https://doi.org/10.5757/JKVS.2012.21.1.48
  19. S. H. Kim, J. Korean Vac. Soc. 20, 374 (2011). https://doi.org/10.5757/JKVS.2011.20.5.374
  20. N. Kniffer, A. Pfluegaer, T. Schulz, Sven Sommer, and B. Schroeder, Thin Solid Films 519, 4582 (2011). https://doi.org/10.1016/j.tsf.2011.01.324
  21. S. G. Ri, H. Watanabe, M. Ogura, D. Takeuchi, S. Yamasaki, H. Okushi, and J. Cryst. Growth 293, 311 (2006). https://doi.org/10.1016/j.jcrysgro.2006.05.036
  22. F. N. Dultsev and L. A. Nenasheva, Appl. Surf. Science 253, 1287 (2006). https://doi.org/10.1016/j.apsusc.2006.01.073
  23. C. A. Figueroa and F. Alvarez, Appl. Surf. Science 253, 1806 (2006). https://doi.org/10.1016/j.apsusc.2006.03.015
  24. S. Park, Y. C. Jeon, and S. H. Kim, to be published in ECS Solid State Science & Technology (2013).
  25. M. Kawaguchi, K. Nozaki, S. Motojima, and H. Iwanaga, J. Cryst. Growth 118, 309 (1992). https://doi.org/10.1016/0022-0248(92)90077-V
  26. S. Park, S. H. Kim, and T. G. Kim, J. Nanomaterials 2012 Article ID 389248 (2012).
  27. H. Tada, A. E. Kumpel, R. E. Lathrop, J. B. Slanina, P. Nieva, P. Zavracky, I. N. Miaoulis, and P. Y. Wong, Journal of Applied Physics I 87, 4189 (2000). https://doi.org/10.1063/1.373050
  28. T. G. Kollie, Physical Review B 16, 4872 (1977). https://doi.org/10.1103/PhysRevB.16.4872
  29. Q. Zhang, L. Yu, and Z. Cui, Mater. Res. Bull. 43, 735 (2008). https://doi.org/10.1016/j.materresbull.2007.03.022