DOI QR코드

DOI QR Code

Preparation and Characterization of Novel Temperature and pH Sensitive (NIPAM-co-MAA) Polymer Microgels and Their Volume Phase Change with Various Salts

pH 감응성 NIPAM-co-MAA 고분자 마이크로젤의 제조 및 분석과 염 종류에 따른 부피상 변화

  • Khan, Mohammad Saleem (National Centre of Excellence in Physical Chemistry, University of Peshawar) ;
  • Khan, Gul Tiaz (National Centre of Excellence in Physical Chemistry, University of Peshawar) ;
  • Khan, Abbas (National Centre of Excellence in Physical Chemistry, University of Peshawar) ;
  • Sultana, Sabiha (National Centre of Excellence in Physical Chemistry, University of Peshawar)
  • Received : 2013.07.24
  • Accepted : 2013.09.04
  • Published : 2013.11.25

Abstract

Novel microgels of N-isopropylacrylamide (NIPAM)-co-methacrylic acid (MAA) (NIPAM-co-MAA) with different contents of N,N-methylene bis acrylamide (MBA) were prepared by emulsion polymerization technique and were studied by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and zeta potential measurement. Effect of pH, temperature and different salts concentration on the microgel particles was investigated. DLS results have shown that the hydrodynamic radius of the microgel increased upon increasing pH and decreased upon increasing temperature. The swelling/deswelling behaviors as determined by DLS showed the ionic repulsions of the carboxyl group of the methacrylic acid and hydrophobic interaction of NIPAM. The effect of various salts on volume phase transition temperature (VPTT) was also investigated. Upon increasing salt concentration, VPTT became broad and shifted to a lower temperature. Electrophoretic mobility measurements showed an increase with increasing pH and temperature at a constant ionic strength.

Keywords

References

  1. A. K. Andrianov and L. G. Payne, Adv. Drug Deliv. Rev., 34, 155 (1998). https://doi.org/10.1016/S0169-409X(98)00038-6
  2. S. V. Vinogradov, T. K. Bronich, and A. Kabanov, Adv. Drug Deliv. Rev., 54, 135 (2002). https://doi.org/10.1016/S0169-409X(01)00245-9
  3. N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pharm. Biopharm., 50, 27 (2000). https://doi.org/10.1016/S0939-6411(00)00090-4
  4. M. Bradley, J. Ramos, and B. Vincent, Langmuir, 21, 1209 (2005). https://doi.org/10.1021/la047966z
  5. M. J. Murray and M. J. Snowden, Adv. Colloid Interface Sci., 54, 73 (1995). https://doi.org/10.1016/0001-8686(94)00222-X
  6. P. F. Kiser, G. Wilson, and D. Needham, Nature(London), 394, 459 (1998). https://doi.org/10.1038/28822
  7. J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, Science, 274, 959 (1996). https://doi.org/10.1126/science.274.5289.959
  8. E. L. Cussler, M. R. Stokar, and J. E. Vararbert, AIChE J., 30, 578 (1984). https://doi.org/10.1002/aic.690300408
  9. K. Kratz, T. Hellweg, and W. Eimer, Colloid Surface A, 170, 137 (2000). https://doi.org/10.1016/S0927-7757(00)00490-8
  10. J. Ostroha, M. Pong, A. Lowman, and N. Dan, Biomaterials, 25, 4345 (2004). https://doi.org/10.1016/j.biomaterials.2003.11.019
  11. H. Brondsted and J. Kopecek, Biomaterials, 12, 584 (1991). https://doi.org/10.1016/0142-9612(91)90056-G
  12. N. A. Peppas and A. G. Mikos, Hydrogels in Medicine and Pharmacy, CRC Press, Boca Raton, FL, Vol. 01, pp 1-25 (1986).
  13. G. Z. Zhang, M. Jiang, L. Zhu, and C. Wu, Polymer, 42, 151 (2001). https://doi.org/10.1016/S0032-3861(00)00332-3
  14. Y. V. Pan, R. A. Wesley, and R. Luginbuhl, Biomacromolecules, 2, 32 (2001). https://doi.org/10.1021/bm0000642
  15. H. Nur, V. T. Pinkrah, J. C. Mitchell, L. S. Benee, and M. J. Snowden, Adv. Colloid Interface Sci., 158, 15 (2010). https://doi.org/10.1016/j.cis.2009.07.008
  16. K. S. Kim, M. H. Kim, and S. H. Cho, J. Ind. Eng. Chem., 11, 736 (2005).
  17. Y. Zhang, T. Liu, Q. Wang, J. Zhao, J. Fang, and W. Shen, Macromol. Res., 20, 484 (2012). https://doi.org/10.1007/s13233-012-0044-z
  18. V. C. Chan and A. S. Hoffmann, Nature, 373, 49 (1955).
  19. T. Tanaka, D. Fillmore, S. Sun, I. Nishio, and G. Swislow, Phys. Rev. Lett., 45, 1636 (1980). https://doi.org/10.1103/PhysRevLett.45.1636
  20. M. Sadeghi and N. Ghasemi, Indian J. Sci. Technol., 5, 1879 (2012).
  21. M. Sadeghi and H. Hosseinzadeh, Turk. J. Chem., 34, 739 (2010).
  22. M. Sadeghi, Braz. J. Chem. Eng., 29, 295 (2012). https://doi.org/10.1590/S0104-66322012000200010
  23. E. Costa, M. M. Lloyd, C. Chopko, A. R. Ana, and P. T. Hammond, Langmuir, 28, 10082 (2012). https://doi.org/10.1021/la301586t
  24. T. Hoare and R. Pelton, Macromolecules, 37, 2544 (2004). https://doi.org/10.1021/ma035658m

Cited by

  1. Dual temperature- and pH-responsive ibuprofen delivery from poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles and their fractal features vol.74, pp.9, 2017, https://doi.org/10.1007/s00289-017-1915-4
  2. Thermodynamic Theory of Multiresponsive Microgel Swelling vol.54, pp.6, 2013, https://doi.org/10.1021/acs.macromol.0c02885