DOI QR코드

DOI QR Code

Manufacture and Properties of PMMA Grafted Starch/Carbon Black/NBR Composites

PMMA 그래프트 전분/카본블랙/NBR 복합체의 제조와 물성

  • Kim, Min-Su (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Cho, Ur Ryong (Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 김민수 (한국기술교육대학교 응용화학공학과) ;
  • 조을룡 (한국기술교육대학교 응용화학공학과)
  • Received : 2013.07.11
  • Accepted : 2013.09.02
  • Published : 2013.11.25

Abstract

Starch was grafted by poly(methyl methacrylate) through the emulsion polymerization method. Modified starch/(acrylonitrile-butadiene rubber) (NBR) compounds were prepared by a latex blend method. The morphology, thermal properties and mechanical properties of the modified starch/carbon black/NBR composites were investigated with the change of starch concentration. The mechanical properties of the composites were improved by the addition of modified starch. But, when the concentration of modified starch was higher than 40 phr, the mechanical properties were deteriorated due to the poor dispersion of modified starch. At the same ratio of starch to carbon black, the composite showed a synergistic reinforcing effect by the good dispersion and high cross-linking density. In addition, the tensile strength, storage modulus, hardness, swelling and other properties were the best.

전분에 폴리(메틸 메타크릴레이트)(PMMA)를 그래프트시켜 starch-g-PMMA로 전분을 개질시켰다. 아크릴로니트릴 부타디엔 고무(NBR) 라텍스와 PMMA 그래프트 전분을 라텍스 블렌드 방법으로 혼합하여 개질된 전분/카본블랙/NBR 복합체를 제조하였다. 전분의 조성에 따라 모폴로지, 열적특성, 기계적 물성을 조사하였다. 전분/카본블랙/NBR 복합체는 전분의 함량이 증가함에 따라 물성이 향상되지만 40 phr 이상으로 전분이 들어가면 전분의 응집현상이 발생하여 분산성이 떨어지고 물성이 저하되는 현상을 관찰할 수 있었다. 25 phr의 전분과 25 phr의 카본블랙이 들어간 경우 우수한 분산성과 높은 가교 밀도에 기인하여 고무에 대한 보강성이 증가하였다. 또한 인장강도, 저장 탄성률, 경도, 팽윤도 등의 물성에서 가장 우수한 결과를 나타내었다.

Keywords

References

  1. A. N. Gent, Engnieering with Rubber: How to Design Rubber Component, Hanser Gardner Pub., Cincinnati, 2001.
  2. E. Papirer, R. Lacroix, and J. B. Donnet, Carbon, 34, 1521 (1996). https://doi.org/10.1016/S0008-6223(96)00103-0
  3. S. S. Choi, C. W. Nah, S. G Lee, and C. W Joo, Polym. Int., 52, 23 (2003). https://doi.org/10.1002/pi.975
  4. G. F. Elizabeth, P. Matteo, and C. Emo, Biomacromolecules, 5, 1200 (2004). https://doi.org/10.1021/bm034507o
  5. W. Y. Tho, W. A. W. A. Rahman, and T. S. Lee, J. Vinyl Addit. Techn., 17, 184 (2011). https://doi.org/10.1002/vnl.20265
  6. L. Yu, K. Dean, and L. Li, Progr. Polym. Sci., 31, 576 (2006). https://doi.org/10.1016/j.progpolymsci.2006.03.002
  7. L. Szazdi, A. Pozsgay, and B. Pukanszky, Eur. Polym. J., 43, 345 (2007). https://doi.org/10.1016/j.eurpolymj.2006.11.005
  8. P. C. Lebaron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 15, 11 (1999). https://doi.org/10.1016/S0169-1317(99)00017-4
  9. L. A. Goettler, K. Y. Lee, and H. Thakkar, Polym. Rev., 47, 291 (2007). https://doi.org/10.1080/15583720701271328
  10. L. Bokobza and J. P. Chauvin, Polymer, 46, 4144 (2005). https://doi.org/10.1016/j.polymer.2005.02.048
  11. A. Rouilly, L. Rigal, and R. G. Gilbert, Polymer, 45, 7813 (2004). https://doi.org/10.1016/j.polymer.2004.09.043
  12. Z. Yang and M. Bhattacharya, Polymer, 37, 2137 (1996). https://doi.org/10.1016/0032-3861(96)85859-9
  13. H. Liu, F. Xie, L. Yu, L. Chen, and L. Li, Prog. Polym. Sci., 34, 1348 (2009). https://doi.org/10.1016/j.progpolymsci.2009.07.001
  14. O. N. Campas-Baypoli, E. C. Rosas-Burgos, P. I. Torres-Chavez, B. Ramirez-Wong, and S. O. Serna-Saldivar, Starch/Starke, 54, 358 (2002). https://doi.org/10.1002/1521-379X(200208)54:8<358::AID-STAR358>3.0.CO;2-W
  15. B. R. Pant, H. J. Jeon, and H. H. Song, Macromol. Res., 19, 307 (2011). https://doi.org/10.1007/s13233-011-0316-z
  16. L. Nurmi, S. Holappa, N. Mikkonen, and J. Seppala, Eur. Polym. J., 43, 1372 (2007). https://doi.org/10.1016/j.eurpolymj.2007.01.038
  17. V. Pimpan and P. Thothong, J. Appl. Polym. Sci., 101, 4083 (2006). https://doi.org/10.1002/app.23352
  18. D. L. Pavia, G. M. Lampman, G. S. Kriz, and J. R. Vyvyan, Introduction To Spectroscopy, 4th edition, Brooks/Cole Pub., California, 2009.
  19. M. C. Li, X. Ge, and U. R. Cho, Macromol. Res., 21, 719 (2013). https://doi.org/10.1007/s13233-013-1083-9
  20. Q. Qi, Y. P. Wu, M. Tian, G. H. Liang, L. Q. Zhang, and J. Ma, Polymer, 47, 3896 (2006). https://doi.org/10.1016/j.polymer.2006.03.095
  21. C. Liu, Y. Shao, and D. M. Jia, Polymer, 49, 2176 (2008). https://doi.org/10.1016/j.polymer.2008.03.005
  22. B. T. Poh and E. K. Tan, J. Appl. Polym. Sci., 82, 6 (2001).
  23. C. W. Nah, W. D. Kim, and S. Lee, Macromol. Res., 9, 157 (2001).
  24. R. K. Matthan, Rubber Engineering, McGraw-Hill, New York, 1998.
  25. A. Ansarifar and R. Nijhawan, Int. J. Adhes. Adhes., 24, 9 (2004). https://doi.org/10.1016/S0143-7496(03)00095-2
  26. G. Hollonger, L. Kuniak, R. H. Marchessault, and R. H. Marchessault, Biopolymer, 13, 890 (1974).
  27. M. C. Li and U. R. Cho, Mater. Lett., 92, 132 (2013). https://doi.org/10.1016/j.matlet.2012.10.050

Cited by

  1. SBR/전분/대나무 숯 복합체의 제조와 물성 vol.42, pp.1, 2013, https://doi.org/10.7317/pk.2018.42.1.29