DOI QR코드

DOI QR Code

Synthesis and Characterization of π-Conjugated Polymer Based on Phthalimide Derivative and its Application for Polymer Solar Cells

프탈이미드 유도체를 기본으로 하는 공액고분자의 합성과 특성, 그리고 태양전지의 적용

  • Do, Thu Trang (Department of Polymer Engineering, Pukyong National University) ;
  • Ha, Ye Eun (Department of Polymer Engineering, Pukyong National University) ;
  • Kim, Joo Hyun (Department of Polymer Engineering, Pukyong National University)
  • ;
  • 하예은 (부경대학교 고분자공학과) ;
  • 김주현 (부경대학교 고분자공학과)
  • Received : 2013.05.17
  • Accepted : 2013.09.06
  • Published : 2013.11.25

Abstract

A new copolymer named T-TI24T (poly((5,5-(2-butyl-5,6-bisdecyloxy-4,7-di-thiophen-2-yl-isoindole-1,3-dione))- alt-(2,5-thiophene))) based on phthalimide derivative and thiophene is synthesized by the Stille-coupling reaction. The polymer shows relatively high number average molecular weight of 86500 g/mol with good solubility in common organic solvents such as chloroform, 1,2-dichlorobenzene, and toluene and is thermally stable up to $380^{\circ}C$. Besides, it possesses a relatively low highest occupied molecular orbital (HOMO) energy level of -5.33 eV, promising the high open circuit voltage ($V_{oc}$) for photovoltaic applications. Active layer solution of polymer T-TI24T-as a donor and (6)-1-(3-(methoxycarbonyl)- {5}-1-phenyl[5,6]-fullerene (PCBM)-as an acceptor in different weight ratios is applied to fabricate the polymer solar cell devices. The ratio of polymer/PCBM affects the solar cell efficiency and the best performance exhibits in the device with polymer/PCBM = 1:3 (w/w), which shows a power conversion efficiency (PCE) of 0.199% and a $V_{oc}$ of 0.99 V, respectively. Even though the device shows the very low PCE, the $V_{oc}$ is higher than that of well known bulk heterojunction type solar cell based on P3HT:PC61BM (c.a. 0.5 V).

프탈이미드 유도체와 티오펜 단량체들을 이용하여 새로운 고분자인 poly((5,5-(2-butyl-5,6-bisdecyloxy-4,7-dithiophen-2-yl-isoindole-1,3-dione))-alt-(2,5-thiophene))(T-TI24T)를 Stille법을 이용하여 합성하였다. T-TI24T의 수평균 분자량은 86500 g/mol로 매우 높으며 클로로포름, 1,2-디클로로벤젠, 톨루엔과 같은 용매에 매우 잘 용해된다. 또한 $380^{\circ}C$까지 매우 우수한 열적 안정성을 갖고 있다. T-TI24T는 꽤 낮은 호모에너지 준위(-5.33 eV)를 갖고 있다. 서로 다른 T-TI24T와 (6)-1-(3-(methoxycarbonyl)-{5}-1-phenyl[5,6]-fullerene(PCBM)의 무게비를 갖는 블렌드를 광활성층으로 하는 태양전지를 제작하여 특성을 살펴본 결과 고분자와 PCBM의 비율이 1:3일 때 가장 최적화된 결과를 보였으며, 이 때 광전변환 효율과 개방전압은 각각 0.199%와 0.99였다. T-TI24T 기반 태양전지들은 비록 매우 작은 광전변환 효율을 갖지만 잘 알려진 P3HT:PC61BM으로 구성된 태양전지와 비교해 큰 매우 큰 개방전압을 갖는다(약 0.5 V).

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. X. Yang and J. Loos, Macromolecules, 5, 1353 (2007).
  2. Y. Y. Liang, Y. Wu, D. Q. Feng, S. T. Tsai, H. J. Son, G. Li, and L. P. Yu, J. Am. Chem. Soc., 131, 56 (2009). https://doi.org/10.1021/ja808373p
  3. W. Cai, X. Gong, and Y. Cao, Sol. Energ. Mater. Sol. Cells, 94, 114 (2010). https://doi.org/10.1016/j.solmat.2009.10.005
  4. X. Guo, H. Xin, F. S. Kim, A. D. T. Liyanage, S. A. Jenekhe, and M. D. Watson, Macromolecules, 44, 269 (2011). https://doi.org/10.1021/ma101878w
  5. E. Wang, L. Hou, Z. Wang, Z. Ma, S. Hellstrom, W. Zhuang, F. Zhang, O. Inganas, and M. R. Andersson, Macromolecules, 44, 2067 (2011). https://doi.org/10.1021/ma102783d
  6. E. Jin, C. Du, M. Wang, W. Li, C. Li, H. Wei, and Z. Bo, Macromolecules, 45, 7843 (2012). https://doi.org/10.1021/ma301622g
  7. Z. G. Zhang and J. Wang, J. Mater. Chem., 22, 4178 (2012). https://doi.org/10.1039/c2jm14951f
  8. M. Y. Jo, S. J. Park, T. Park, Y. S. Won, and J. H. Kim, Org. Electron., 13, 2185 (2012). https://doi.org/10.1016/j.orgel.2012.06.015
  9. S. C. Price, A. C. Stuart, L. Yang, H. Zhou, and W. You, J. Am. Chem. Soc., 133, 4625 (2011). https://doi.org/10.1021/ja1112595
  10. T. Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, and Y. Tao, J. Am. Chem. Soc., 133, 4250 (2011). https://doi.org/10.1021/ja200314m
  11. C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So, and J. R. Reynolds, J. Am. Chem. Soc., 133, 10062 (2011). https://doi.org/10.1021/ja204056m
  12. J. You, C. C. Chen, L. Dou, S. Murase, H. S. Duan, S. A. Hawks, T. Xu, H. J. Son, L. Yu, G. Li, and Y. Yang, Adv. Mater., 24, 5267 (2012). https://doi.org/10.1002/adma.201201958
  13. L. Huo, L. Ye, Y. Wu, Z. Li, X. Guo, M. Zhang, S. Zhang, and J. Hou, Macromolecules, 45, 6923 (2012). https://doi.org/10.1021/ma301254x
  14. J. W. Lee, Y. S. Choi, and W. H. Jo, Org. Electron., 13, 3060 (2012). https://doi.org/10.1016/j.orgel.2012.09.004
  15. P. Ding, C. Zhong, Y. Zou, C. Pan, H. Wu, and Y. Cao, J. Phys. Chem. C, 115, 16211 (2011). https://doi.org/10.1021/jp2031434
  16. J. M. Jiang, P. A. Yang, T. H. Hsieh, and K. H. Wei, Macromolecules, 44, 9155 (2011). https://doi.org/10.1021/ma201848z
  17. M. Wang, C. Li, A. Lv, Z. Wang, and Z. Bo, Macromolecules, 45, 3017 (2012). https://doi.org/10.1021/ma202752h
  18. R. T. Weitz, K. Amsharov, U. Zschieschang, E. B. Villas, D. K. Goswami, M. Burghard, H. Dosch, M. Jansen, K. Kern, and H. Klauk, J. Am. Chem. Soc., 130, 4637 (2008). https://doi.org/10.1021/ja074675e
  19. D. J. Gundlach, K. P. Pernstich, G. Wilckens, M. Gruter, S. Haas, and B. Batlogg, J. Appl. Phys., 98, 064502/1 (2005).
  20. S. Tatemichi, M. Ichikawa, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett., 89, 112108 (2006). https://doi.org/10.1063/1.2349290
  21. H. Xin, X. Guo, G. Ren, M. D. Watson, and S. A. Jenekhe, Adv. Energ. Mater., 2, 575 (2012). https://doi.org/10.1002/aenm.201100718
  22. M. Zhang, X. Guo, Z. G. Zhang, and Y. Li, Polymer, 52, 5464 (2011). https://doi.org/10.1016/j.polymer.2011.10.007
  23. J. Y. Lee, K. W. Song, J. R. Ku, T. H. Sung, and D. K. Moon, Sol. Energ. Mater. Sol. Cells, 95, 3377 (2011). https://doi.org/10.1016/j.solmat.2011.07.033
  24. J. Y. Lee, S. M. Lee, K. W. Song, and D. K. Moon, Eur. Polym. J., 48, 532 (2012). https://doi.org/10.1016/j.eurpolymj.2011.12.006
  25. F. Babudri, S. R. Cicco, L. Chiavarone, G. M. Farinola, L. C. Lopez, F. Naso, and G. Scamarcio, J. Mater. Chem., 10, 1573 (2000). https://doi.org/10.1039/a909780e
  26. J. Sleven, C. G. Walrand, and K. Binnemans, Mater. Sci. Eng. C, 18, 229 (2001). https://doi.org/10.1016/S0928-4931(01)00365-4
  27. C. Topacli, A. Topacli, M. Civan, F. Ercan, M. Durmu, and V. Ahsen, Thin Solid Films, 516, 8299 (2008). https://doi.org/10.1016/j.tsf.2008.03.040
  28. V. Wintgens and C. Amiel, J. Photochem. Photobiol. A, 168, 217 (2004). https://doi.org/10.1016/j.jphotochem.2004.06.002
  29. A. Najari, S. Beaupré, P. Berrouard, Y. Zou, J. Pouliot, C. L. Pérusse, and M. Leclerc, Adv. Funct. Mater., 21, 718 (2011). https://doi.org/10.1002/adfm.201001771
  30. M. Helgesen, S. A. Gevorgyan, F. C. Krebs, and R. A. J. Janssen, Chem. Mater., 21, 4669 (2009). https://doi.org/10.1021/cm901937d
  31. J. F. Lee, S. L. C. Hsu, P. I. Lee, H. Y. Chuang, J. S. Chen, and W. Y. Chou, J. Polym. Sci. Part A: Polym. Chem., 49, 4618 (2011). https://doi.org/10.1002/pola.24905
  32. S. Wakim, S. Beaupre, N. Blouin, B. R. Aich, S. Rodman, R. Gaudiana, Y. Tao, and M. Leclerc, J. Mater. Chem., 19, 5351 (2009). https://doi.org/10.1039/b901302d
  33. R. C. Coffin, J. Peet, J. Rogers, and G. C. Bazan, Nat. Chem., 1, 657 (2009). https://doi.org/10.1038/nchem.403
  34. N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. N. Plesu, M. Belletete, G. Durocher, Y. Tao, and M. Leclerc, J. Am. Chem. Soc., 130, 732 (2008). https://doi.org/10.1021/ja0771989
  35. D. Baran, A. Balan, T. Stubhan, T. Ameri, L. Toppare, and C. J. Brabec, Synth. Met., 162, 2047 (2012). https://doi.org/10.1016/j.synthmet.2012.09.017
  36. A.V. Patil, W. H. Lee, K. Kim, H. Park, I. N. Kang, and S. H. Lee, Polym. Chem., 2, 2907 (2011). https://doi.org/10.1039/c1py00274k
  37. H. Xin, X. Guo, F. S. Kim, G. Ren, M. D. Watson, and S. A. Jenekhe, J. Mater. Chem., 19, 5303 (2009). https://doi.org/10.1039/b900073a
  38. G. Zhang, Y. Fu, Q. Zhang, and Z. Xie, Macromol. Chem. Phys., 211, 2596 (2010). https://doi.org/10.1002/macp.201000430
  39. Y. Zhang, S. K. Hau, H. L. Yip, Y. Sun, O. Acton, and A. K. Y. Jen, Chem. Mater., 22, 2696 (2010). https://doi.org/10.1021/cm100417z
  40. G. Y. Chen, Y. H. Cheng, Y. J. Chou, M. S. Su, C. M. Chen, and K. H. Wei, Chem. Commun., 47, 5064 (2011). https://doi.org/10.1039/c1cc10585j
  41. E. Hauff, J. Parisi, and V. Dyakonov, Thin Solid Films, 511, 506 (2006).
  42. J. Nakamura, K. Murata, and K. Takahashi, Appl. Phys. Lett., 87, 132105 (2005). https://doi.org/10.1063/1.2058210
  43. J. Liu, Y. Shi, and Y. Yang, Adv. Funct. Mater., 11, 420 (2001). https://doi.org/10.1002/1616-3028(200112)11:6<420::AID-ADFM420>3.0.CO;2-K
  44. N. Berton, C. Ottone, V. Labet, R. Bettignies, S. Bailly, A.Grand, C. Morell, S. Sadki, and F. Chandezon, Macromol. Chem. Phys., 212, 2127 (2011). https://doi.org/10.1002/macp.201100209

Cited by

  1. Effect of Phthalimide in 2,1,3-Benzooxadiazole Based Copolymer on the Performances of Solar Cells vol.598, pp.1, 2013, https://doi.org/10.1080/15421406.2014.933383
  2. Biosourced Vanillin-Based Building Blocks for Organic Electronic Materials vol.86, pp.23, 2013, https://doi.org/10.1021/acs.joc.1c01869