DOI QR코드

DOI QR Code

Characterization of Poly(lactic acid) Foams Prepared with Supercritical Carbon Dioxide

초임계 이산화탄소를 이용하여 제조한 Poly(lactic acid) 발포체의 특성 분석

  • Shin, Ji Hee (Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Hyun Kyu (Department of Polymer Science and Engineering, Inha University) ;
  • Song, Kwon Bin (Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Kwang Hee (Department of Polymer Science and Engineering, Inha University)
  • 신지희 (인하대학교 고분자공학과) ;
  • 이현규 (인하대학교 고분자공학과) ;
  • 송권빈 (인하대학교 고분자공학과) ;
  • 이광희 (인하대학교 고분자공학과)
  • Received : 2013.05.15
  • Accepted : 2013.07.26
  • Published : 2013.11.25

Abstract

The foams of a poly(lactic acid) modified by the reactive compounding were produced with the batch foaming technique using supercritical $CO_2(scCO_2)$. Experiments were performed at $105{\sim}135^{\circ}C$ and 12~24 MPa. The blowing ratio and foam structure were significantly affected by changing the temperature and pressure conditions in the foaming process. The blowing ratio first increased with increasing foaming temperature and saturation pressure, reached a maximum and then decreased with a further increase in the foaming temperature and saturation pressure. Decreasing the rate of depressurization permitted a longer period of cell growth and therefore larger microcellular structures were obtained.

반응 컴파운딩으로 개질한 poly(lactic acid)를 초임계 $CO_2(scCO_2)$를 사용하여 발포하였다. 발포는 $105{\sim}135^{\circ}C$와 12~24 MPa 범위에서 실시하였다. 발포체의 발포 배율과 셀 구조는 온도, 압력 및 감압 속도와 같은 발포 조건에 크게 영향을 받았다. 발포 온도와 포화 압력 증가에 따라서 발포 배율은 증가하다가 감소하였으며, 그 결과로 $120^{\circ}C$ 발포 온도 및 20 MPa 포화 압력에서 최대 발포 배율이 얻어졌다. 감압 속도가 느린 경우에는 셀이 장시간 동안 팽창함으로써 보다 큰 셀 구조를 가지는 발포체가 얻어졌다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. D. Y. Hwang, K. D. Han, D. Hong, K. I. Lee, and K. Y. Lee, Polymer(Korea), 24, 529 (2000).
  2. G. Yang, J. Su, J. Gao, X. Hu, C. Geng, and Q. Fu, J. Supercrit. Fluids, 73, 1 (2013). https://doi.org/10.1016/j.supflu.2012.11.004
  3. J. Yang, M. Wu, F. Chen, Z. Fei, and M. Zhong, J. Supercrit. Fluids, 56, 201 (2011). https://doi.org/10.1016/j.supflu.2010.12.014
  4. M. Sauceau, J. Fages, A. Common, C. Nikitine, and E. Rodier, Prog. Polym. Sci., 36, 749 (2011). https://doi.org/10.1016/j.progpolymsci.2010.12.004
  5. M. A. Jacobs and M. F. Kemmere, Polymer, 45, 7539 (2004). https://doi.org/10.1016/j.polymer.2004.08.061
  6. B. Zhu, W. Zha, J. Yang, C. Zhang, and L. J. Lee, Polymer, 51, 2177 (2010). https://doi.org/10.1016/j.polymer.2010.03.026
  7. M. Lee, C. B. Park, and C. Tzoganakis, Polym. Eng. Sci., 39, 99 (1999). https://doi.org/10.1002/pen.11400
  8. S. K. Goel and E. J. Beckman, Polym. Eng. Sci., 34, 1137 (1994). https://doi.org/10.1002/pen.760341407
  9. D. Klempner and K. Frisch, Handbook of Polymeric Foams and Foam Technology, Oxford Univ. Press, New York, 1991.
  10. L. T. Guan, M. Xiao, Y. Z. Meng, and R. K. Y. Li, Polym. Eng. Sci., 46, 153 (2006). https://doi.org/10.1002/pen.20460
  11. R. W. Lenz, Adv. Polym. Sci., 107, 1 (1993). https://doi.org/10.1007/BFb0027550
  12. D. Bello, T. J. Smith, S. R. Woskie, R. P. Streicher, M. F. Boeniger, C. A. Redlich, and Y. Liu, J. Environ. Monit., 8, 525 (2006).
  13. Z. M. Xu, X. L. Jiang, T. Liu, G. H. Hu, L. Zhao, Z. N. Zhu, and W. K. Yuan, J. Supercrit. Fluids, 41, 299 (2007). https://doi.org/10.1016/j.supflu.2006.09.007
  14. A. Lilaonitkul, J. C. West, and S. L. Cooper, J. Macromol. Sci. Phys., B12, 563 (1976).
  15. S. K. Goel and E. J. Beckman, Polym. Eng. Sci., 34, 1148 (1994). https://doi.org/10.1002/pen.760341408
  16. S. P. Nalawade, F. Picchioni, and L. O. B. M. Janssen, Prog. Polym. Sci., 31, 29 (2006).
  17. B. Li, X. Zhu, G. H. Hu, T. Liu, G. Cao, L. Zhao, and W. Yuan, Polym. Eng. Sci., 48, 1608 (2008). https://doi.org/10.1002/pen.21137

Cited by

  1. Environmentally Friendly Polylactic Acid-Based Thermal Insulation Foams Blown with Supercritical CO2 vol.57, pp.15, 2018, https://doi.org/10.1021/acs.iecr.7b05023
  2. Compression Molding of Thermoplastic Polyurethane Foam Sheets with Beads Expanded by Supercritical CO2 Foaming vol.13, pp.4, 2021, https://doi.org/10.3390/polym13040656