DOI QR코드

DOI QR Code

Effects of Demineralized Bone Particle Loaded Poly(lactic-co-glycolic acid) Scaffolds on the Attachment and Proliferation of Costal Cartilage Cells

탈미네랄화된 골분/PLGA 지지체에서 늑연골 세포의 부착과 성장에 미치는 영향

  • Cho, Sun Ah (Dept. of BIN Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National Univ.) ;
  • Song, Jeong Eun (Dept. of BIN Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National Univ.) ;
  • Kim, Kyoung Hee (Dept. of BIN Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National Univ.) ;
  • Ko, Hyun Ah (Dept. of BIN Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National Univ.) ;
  • Lee, Dongwon (Dept. of BIN Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National Univ.) ;
  • Kwon, Soon Yong (Dept. of Orthopedic Surgery, Yeouido St. Mary's Hospital, Catholic University of Korea) ;
  • Chung, Jin Wha (Dept. of Orthopedic Surgery, Yeouido St. Mary's Hospital, Catholic University of Korea) ;
  • Khang, Gilson (Dept. of BIN Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National Univ.)
  • 조선아 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 송정은 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 김경희 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 고현아 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 이동원 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 권순용 (가톨릭대학교 의과대학 여의도성모병원 정형외과) ;
  • 정진화 (가톨릭대학교 의과대학 여의도성모병원 정형외과) ;
  • 강길선 (전북대학교 BIN 융합공학과, 고분자 나노공학과)
  • Received : 2013.05.06
  • Accepted : 2013.06.19
  • Published : 2013.09.25

Abstract

It has been widely accepted that costal cartilage cells (CCs) have more excellent initial proliferation capacity than articular cartilage cells as well as the easiness for isolation and collection. This study demonstrated that CCs might be one of the substitutes for articular cartilage cells by tissue engineered cartilage. Poly(lactic-co-glycolic acid) (PLGA) has been extensively tested and used as scaffold material but it was limited by the low attachment of cells and the induction of inflammatory cells. Base on previous our studies, we confirmed demineralized bone particle (DBP) had the power of the reduction of inflammatory reaction and the stimulation proliferation of cells. We fabricated PLGA scaffold loaded with 10, 20, 40 and 80 wt% DBP and then tested the possibility of the regeneration of cartilage using CCs. Assays of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and scanning electron microscope (SEM) carried out to evaluate the attachment and proliferation of CCs in DBP/PLGA scaffolds. Glycosaminoglycan (sGAG) and collagen contents assay were conducted to confirm the effects of DBP on formation of extracellular matrix. This study demonstrated that DBP/PLGA scaffolds showed significant positive effects on cell growth and proliferation due to the vitality of DBP as well as the possibility of the application of CCs for tissue engineered cartilage.

늑연골세포는 초기 증식능력이 관절연골세포보다 우수하며, 또한 세포 채취에 용이하다는 장점이 있어, 관절연골의 대안으로 사용된다. FDA의 승인을 받은 합성고분자인 폴리락산-글리콜산 공중합체(PLGA)는 조직공학적 생체재료로 사용되고 있으나, 세포 부착률이 낮고, 염증반응을 야기시킨다고 보고되고 있다. 본 연구에서는 세포의 증식에 영향을 주며 염증반응이 감소된다고 보고된 탈미네랄골분(DBP)을 이용하여, 함량별 DBP/PLGA를 제조한 뒤, 세포를 파종하여 연구를 실시하였다. 세포의 부착 및 증식률을 측정하기 위하여 세포 파종한 후 MTT와 SEM 분석을 수행하였으며, DBP가 세포외 기질 형성에 미치는 영향을 확인하고자 글리코스아미노글라이칸(sGAG)과 콜라겐 함량을 측정하였다. 생체 내 외 환경에서 세포의 부착과 증식에 미치는 영향을 관찰하기 위해 연구를 진행하여, PLGA 지지체보다 DBP/PLGA 지지체가 세포의 성장과 증식에 영향을 주는 것을 확인하였으며, DBP의 함량이 증가할수록 효과가 좋은 것으로 나타났다.

Keywords

References

  1. B. Kurz, C. Domm, M. Jin, R. Sellckau, and M. Schunke, Tissue Eng., 10, 1277 (2004). https://doi.org/10.1089/ten.2004.10.1277
  2. N. Isogai, H. Kusuhara, Y. Ikada, H. Ohtani, R. Jacquet, J. Hillyer, E. Lowder, and W. J. Landis, Tissue Eng., 12, 691 (2006). https://doi.org/10.1089/ten.2006.12.691
  3. M. J. Stoddart, S. Grad, D. Eglin, and M. Alini, Regen. Med., 4, 81 (2009). https://doi.org/10.2217/17460751.4.1.81
  4. J. Lee, E. Lee, H. Y. Kim, and Y. Son, Biotechnol. Appl. Bioc., 48, 149 (2007). https://doi.org/10.1042/BA20060233
  5. P. Szeparowicz, J. Popko, B. Sawicki, and S. Wolczynski, Folia Histochem. Cyto., 44, 201 (2006).
  6. M. Sittinger, J. Bujia, W. W. Minuth, C. Hammer, and G. R. Burmester, Biomaterials, 15, 451 (1994). https://doi.org/10.1016/0142-9612(94)90224-0
  7. G. Schulze-Tanzil, Ann. Anat., 191, 325 (2009). https://doi.org/10.1016/j.aanat.2009.05.003
  8. J. W. Dai, J. Wang, J. T. Lu, D. H. Zou, H. Sun, Y. F. Dong, H. B. Yu, L. Zhang, T. Yang, X. L. Zhang, X. D. Wang, and G. F. Shen, Biomaterials, 33, 7699 (2012). https://doi.org/10.1016/j.biomaterials.2012.07.020
  9. S. M. Lien, L. Y. Ko, and T. J. Huang, Acta Biomater., 5, 670 (2009). https://doi.org/10.1016/j.actbio.2008.09.020
  10. W. S. Toh, E. H. Lee, and T. Cao, Stem Cell Rev. Rep., 7, 544 (2011). https://doi.org/10.1007/s12015-010-9222-6
  11. R. P. F. Lanao, S. C. G. Leeuwenburgh, J. G. C. Wolke, and J. A. Jansen, Acta Biomater., 7, 3459 (2011). https://doi.org/10.1016/j.actbio.2011.05.036
  12. B. K. Gu, M. S. Kim, S. J. Park, and C.-H. Kim, Inter. J. Tissue Regen., 2, 83 (2011).
  13. Y. Takashima, R. Saito, A. Nakajima, M. Oda, A. Kimura, T. Kanazawa, and H. Okada, Int. J. Pharm., 343, 262 (2007). https://doi.org/10.1016/j.ijpharm.2007.05.042
  14. K. Uematsu, K. Hattori, Y. Ishimoto, J. Yamauchi, T. Habata, Y. Takakura, H. Ohgushi, T. Fukuchi, and M. Sato, Biomaterials, 26, 4273 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.037
  15. S. C. Ji, J. S. Lee, D. H. Kim, C. H. Kang, J. H. Park, and B. J. Lee, Polymer(Korea), 34, 159 (2010).
  16. E. S. Place, N. D. Evans, and M. M. Stevens, Nat. Mater., 8, 457 (2009). https://doi.org/10.1038/nmat2441
  17. S. J. Yoon, S. H. Kim, H. J. Ha, Y. K. Ko, J. W. So, M. S. Kim, Y. I. Yang, G. Khang, J. M. Rhee, and H. B. Lee, Tissue Eng. Part A, 14, 539 (2008). https://doi.org/10.1089/tea.2007.0129
  18. D. H. Yang, H. N. Park, J. B. Lee, D. N. Heo, M. S. Bae, and I. K. Kwon, Inter. J. Tissue Regen., 2, 119 (2011).
  19. P. Supronowicz, E. Gill, A. Trujillo, T. Thula, R. Zhukauskas, T. Ramos, and R. R. Cobb, Tissue Eng. Part A, 17, 789 (2011).
  20. W. S. Pietrzak, S. N. Ali, D. Chitturi, M. Jacob, and J. E. Woodell-May, Cell Tissue Bank., 12, 81 (2011). https://doi.org/10.1007/s10561-009-9168-6
  21. A. Y. Oh, S. H. Kim, S. J. Lee, J. J. Yoo, M. van Dyke, J. M. Rhee, and G. Khang, Polymer(Korea), 32, 403 (2008).
  22. E. M. Roos and L. Dahlberg, Arthritis Rheum.-US, 52, 3507 (2005). https://doi.org/10.1002/art.21415
  23. H. L. Kim, S. J. Kim, H. Yoo, M. Hong, D. Lee, and G. Khang, Inter. J. Tissue Regen., 1, 81 (2010).
  24. J. A. Cooper, H. H. Lu, F. K. Ko, J. W. Freeman, and C. T. Laurencin, Biomaterials, 26, 1523 (2005). https://doi.org/10.1016/j.biomaterials.2004.05.014
  25. B. B. Mandal and S. C. Kundu, Biomaterials, 30, 2956 (2009). https://doi.org/10.1016/j.biomaterials.2009.02.006
  26. J. Stojkovska, B. Bugarski, and B. Obradovic, J. Mater. Sci.-Mater. M., 21, 2869 (2010). https://doi.org/10.1007/s10856-010-4135-0
  27. B. C. Cho and S. H. Lee, Plast. Reconstr. Surg., 117, 936 (2006). https://doi.org/10.1097/01.prs.0000200612.62079.59
  28. H. J. Sung, J. Su, J. D. Berglund, B. V. Russ, J. C. Meredith, and Z. S. Galis, Biomaterials, 26, 4557 (2005). https://doi.org/10.1016/j.biomaterials.2004.11.034
  29. W. Y. Ahn, H. L. Kim, J. E. Song, D. Lee, and G. Khang, Polymer(Korea), 35, 499 (2011).
  30. C. K. Hagandora, M. A. Tudares, and A. J. Almarza, Ann. Biomed. Eng., 40, 688 (2012). https://doi.org/10.1007/s10439-011-0433-z
  31. L. Wang, M. Lazebnik, and M. S. Detamore, Osteoarthr. Cartilage, 17, 346 (2009). https://doi.org/10.1016/j.joca.2008.07.004

Cited by

  1. Evaluation of the Therapeutic Potential In vitro and In vivo of the SIS/PLGA Scaffolds for Costal Cartilage Regeneration vol.24, pp.5, 2016, https://doi.org/10.1007/s13233-016-4065-x