DOI QR코드

DOI QR Code

Polyimide Films Using Dianhydride Containing Ester Linkages and Various Amine Monomers

에스터기를 가지는 무수물과 다양한 아민 단량체를 이용한 폴리이미드 필름

  • Choi, Chang Hwon (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Hae (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
  • 최창훤 (금오공과대학교 에너지융합소재 공학부) ;
  • 장진해 (금오공과대학교 에너지융합소재 공학부)
  • Received : 2013.04.15
  • Accepted : 2013.06.25
  • Published : 2013.09.25

Abstract

Hydroquinone bis(trimellitic anhydride) (HQ-TA) was synthesized from trimellitic anhydride chloride and hydroquinone. Poly(amic acid)s (PAAs) were synthesized by reacting a HQ-TA with six different diamines, which were cyclized to yield polyimides (PIs) containing ester linkages by chemical- and thermal-imidization methods. The various PIs were synthesized from structurally different aromatic diamines. The glass transition temperatures ($T_g$) were in the range of 167-$215^{\circ}C$, and the decomposition temperatures (${T_D}^i$) were in the range of $364-451^{\circ}C$. The maximum improvements in coefficient of thermal expansion (CTE) and barrier to oxygen permeation were observed in PIs using TFB (3.23 $ppm/^{\circ}C$) and 4,4-ODA (< $10^{-2}cc/m^2/day$), respectively. The PI films possessed a transmittance of 65-89% at 500 nm and had a yellowish color with a yellow index (YI) of 3.01-69.52.

Trimellitic anhydride chloride와 hydroquinone을 이용하여 hydroquinone bis(trimellitate anhydride)(HQ-TA)를 합성하였다. 합성된 HQ-TA와 6가지의 다양한 디아민들을 사용하여 전구체 polyamic acid(PAA)를 합성한 후, 열적-및 화학적-이미드화 반응을 거쳐 에스터 그룹을 가지는 폴리이미드(polyimide, PI) 필름을 합성하였다. PI 합성은 구조적으로 다양한 방향족 디아민을 사용하였다. 각 디아민 구조에 따른 유리전이온도($T_g$)는 167-$215^{\circ}C$를 보였고, 초기분해온도(${T_D}^i$)는 $364-451^{\circ}C$를 나타내었다. 가장 향상된 열팽창 계수(coefficient of thermal expansion, CTE)와 가스차단성은 TFB(3.23 $ppm/^{\circ}C$)와 4,4-ODA(< $10^{-2}cc/m^2/day$) 단량체를 각각 사용하였을 때 보였다. PI 필름의 투과도는 500 nm에서 65-89%를 보였으며, 노란색 정도를 나타내는 황색지수(yellow index, YI)는 3.01-69.52를 보였다.

Keywords

References

  1. N. Kinjo, S. Numata, and T. Yokouama, Plastics, 34, 81 (1983).
  2. M. Hasegawa and K. Horie, Prog. Polym. Sci., 26, 259 (2001). https://doi.org/10.1016/S0079-6700(00)00042-3
  3. F. Yang, J. Zhao, Y. Li, S. Zhang, Y. Shao, H. Shao, T. Ma, and C. Gong, Eur. Polym. J., 45, 2053 (2009). https://doi.org/10.1016/j.eurpolymj.2009.03.021
  4. W. B. Jang, D. Y. Shin, S. H. Choi, S. G. Park, and H. S. Han, Polymer, 48, 2130 (2007). https://doi.org/10.1016/j.polymer.2007.02.023
  5. J. W. Park, M. Lee, J. W. Liu, S. D. Kim, J. Y. Chang, and S. B. Rhee, Macromolecules, 27, 3459 (1994). https://doi.org/10.1021/ma00091a003
  6. Z. Ge, L. Fan, and S. Yang, Eur. Polym. J., 44, 1252 (2008). https://doi.org/10.1016/j.eurpolymj.2008.01.041
  7. J. Yin, Y.-F. Ye, L. Li, Y.-L. Zhang, Y. Huang, and Z.-G. Wang, Eur. Polym. J., 35, 1367 (1999). https://doi.org/10.1016/S0014-3057(98)00203-1
  8. K. S. Seo, K. I. Sul, Y. S. Kim, K.-Y. Choi, D. H. Suh, and J. C. Won, Polymer(Korea), 31, 130 (2007).
  9. M. Hasegawa, M. Horiuchi, and Y. Wada, High Perform. Polym., 19, 175 (2007). https://doi.org/10.1177/0954008306073178
  10. J.-G. Liu, X.-J. Zhao, H.-S. Li. Fan, and S.-Y. Yang, High Perform. Polym., 18, 851 (2006). https://doi.org/10.1177/0954008306063639
  11. G. Maier, Prog. Polym. Sci., 26, 3 (2001). https://doi.org/10.1016/S0079-6700(00)00043-5
  12. S. Ando, T. Matsuura, and S. Sasaki, Polym. J., 29, 69 (1997). https://doi.org/10.1295/polymj.29.69
  13. C. P. Yang, Y.-Y. Su, and K. L. Wu, J. Polym. Sci. Part A: Polym. Chem., 42, 5424 (2004). https://doi.org/10.1002/pola.20313
  14. C. H. Ju, J.-C. Kim, and J.-H. Chang, J. Appl. Polym. Sci., 106, 4192 (2007). https://doi.org/10.1002/app.26987
  15. H. S. Jin and J.-H. Chang, Polymer(Korea), 32, 256 (2008).
  16. U. K. Min and J.-H. Chang, Thick Films: Properties, Techmology and Applications, Nova Sci. Publishers Inc., N.Y., USA, Chapter 5 (2012).
  17. I. H. Choi and J.-H. Chang, Polym. Adv. Technol., 22, 682 (2011). https://doi.org/10.1002/pat.1565
  18. J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando, and M. Ueda, Macromolecules, 40, 4614 (2007). https://doi.org/10.1021/ma070706e
  19. M. C. Oh, H. Zhang, A. Szep, V. Chuyanov, W. H. Steier, C. Zhang, L. R. Dalton, H. Erling, B. Tsap, and H. R. Fetterman, Appl. Phys. Lett., 76, 3525 (2000). https://doi.org/10.1063/1.126695
  20. J. Ramiro, J. I. Eguiazabal, and J. Nazabal, Eur. Polym. J., 42, 458 (2006). https://doi.org/10.1016/j.eurpolymj.2005.07.002
  21. R. H. Vora, Mater. Sci. Eng. B, 168, 71 (2010). https://doi.org/10.1016/j.mseb.2009.10.023
  22. E. Hamciuc, C. Hamciuc, and M. Cazacu, Eur. Polym. J., 43, 4739 (2007). https://doi.org/10.1016/j.eurpolymj.2007.08.010
  23. C. P. Yang, Y.-Y. Su, and Y.-C. Chen, Eur. Polym. J., 42, 721 (2006). https://doi.org/10.1016/j.eurpolymj.2005.10.001
  24. D.-J. Liaw, C.-C. Huaug, and W.-H. Chen, Polymer, 47, 2337 (2006). https://doi.org/10.1016/j.polymer.2006.01.028
  25. S. Mehdipour-Ataei and M. Hatami, Eur. Polym. J., 41, 2010 (2005). https://doi.org/10.1016/j.eurpolymj.2005.03.012
  26. H. Behniafar and A. Banihashemi, Eur. Polym. J., 40, 1409 (2004). https://doi.org/10.1016/j.eurpolymj.2004.02.006
  27. A. Banihashemi and F. Atabaki, Eur. Polym. J., 38, 2119 (2002). https://doi.org/10.1016/S0014-3057(02)00081-2
  28. M. Bruma, B. Schulz, and F. W. Mercer, Polymer, 35, 4209 (1994). https://doi.org/10.1016/0032-3861(94)90598-3
  29. C. K. Lee, S. Sundar, J. U. Kwon, and H. S. Han, J. Polym. Sci. Part A: Polym. Chem., 42, 3612 (2004). https://doi.org/10.1002/pola.20214
  30. H. S. Jin and J.-H. Chang, J. Appl. Polym. Sci., 107, 109 (2008). https://doi.org/10.1002/app.26173
  31. U. Domanska, M. Zawadzki, M. Krolikowski, and A. Lewandrowska, Chem. Eng. J., 181, 63 (2012).
  32. L. Xue, D. D. Desmarteau, and W. T. Pennington, Solid State Sci., 7, 311 (2005). https://doi.org/10.1016/j.solidstatesciences.2004.10.029
  33. U. Domanska and K. Paduszynski, J. Chem. Thermodynamics, 42, 1361 (2010). https://doi.org/10.1016/j.jct.2010.05.017
  34. S. O. Kim, B. H. Jeon, and I. J. Chug, Polymer, 42, 3249 (2001). https://doi.org/10.1016/S0032-3861(00)00540-1
  35. M. Hasegawa, K. Kasamatsu, and K Koseki, Eur. Polym. J., 48, 483 (2012). https://doi.org/10.1016/j.eurpolymj.2011.11.008
  36. M. Hasegawa and K Koseki, High Perform. Polym., 18, 697 (2006). https://doi.org/10.1177/0954008306068231
  37. M. Hasegawa, Y. Sakamoto, Y. Tanaka, and Y. Kobayashi, Eur. Polym. J., 46, 1510 (2010). https://doi.org/10.1016/j.eurpolymj.2010.04.014
  38. Y. M. Kim, J.-H. Chang, and J.-C. Kim, Macromol. Res., 20, 1257 (2012). https://doi.org/10.1007/s13233-012-0182-3
  39. C. H. Choi, Y. M. Kim, and J.-H. Chang, Polym. Sci. Tech., 23, 296 (2012).
  40. I. H. Choi and J.-H. Chang, Polymer, 34, 480 (2010).
  41. Y. M. Kim and J.-H. Chang, Appl. Chem. Eng., 23, 266 (2012).
  42. S. Mastsui, H. Sato, and T. Nakagawa, J. Memb. Sci., 141, 31 (1998). https://doi.org/10.1016/S0376-7388(97)00286-X
  43. U. K. Min, J.-C. Kim, and J.-H. Chang, Polym. Eng. Sci., 51, 2143 (2011). https://doi.org/10.1002/pen.22059