DOI QR코드

DOI QR Code

Ring-Opening Polymerization of L-lactide with Glycidol as Initiator

Glycidol을 개시제로 이용한 L-lactide 개환중합

  • Yim, Jin-Heong (Division of Advanced Materials Engineering, Kongju National University) ;
  • Kim, Da Hee (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
  • Received : 2013.03.26
  • Accepted : 2013.07.16
  • Published : 2013.09.25

Abstract

Glycidol-poly(lactide) (Gly-PLA) were synthesized via L-lactide ring opening polymerization with glycidol as an initiator and $Al(O-i-Pr)_3$ catalyst. The structure of Gly-PLA was analyzed and successfully confirmed by 1H NMR. The OH group of glycidol in Gly-PLA was absent according to the $^1H$ NMR analysis, indicating that the terminal OH group of glycidol successfully served as an initiator in the L-lactide polymerization. The solution and bulk polymerizations of L-lactide with glycidol were performed to examine the effect of L-lactide/glycidol molar ratio, polymerization temperature and time on the molecular characteristics of Gly-PLA. The conversion and molecular weight increased with an increase in L-lactide/glycidol molar ratio. Gly-PLA showed the bimodal type DSC curve. The low $T_m$ peak of low molecular weight reduced but the high $T_m$ peak of high molecular weight increased as L-lactide/glycidol molar ratio increased.

$Al(O-i-Pr)_3$을 촉매로 이용하고 중합 개시제로 glycidol을 사용하여 L-lactide를 개환중합하여 glycidol-poly(lactide)(Gly-PLA)를 얻었다. $^1H$ NMR 분석 결과 glycidol의 말단에 존재하는 수산기가 Gly-PLA에는 존재하지 않았고 이를 통해 glycidol의 말단에 존재하는 OH기가 개시제의 역할을 하여 중합이 진행되었음을 확인하였다. Llactide용액중합과 벌크중합을 진행하였으며, L-lactide/glycidol 몰비, 중합 온도와 시간에 따라 생성된 Gly-PLA의 분자특성을 관찰하였다. L-lactide/glycidol 몰비가 증가할수록 수율과 분자량은 증가하였다. 또한 L-lactide/glycidol 몰비가 증가할수록 저분자량에 해당하는 낮은 녹는점 피크는 줄어들고, 고분자량에 해당하는 높은 녹는점 피크가 증가하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Q. Tu, J. C. Wang, R. Liu, and J. Wang, Colloids Surf. B: Biointerfaces, 102, 331 (2013). https://doi.org/10.1016/j.colsurfb.2012.08.025
  2. M. Spasova, L. Mespouille, O. Coulembier, D. Paneva, N. Manolova, and I. Rashkov, Biomacromolecules, 10, 1217 (2009). https://doi.org/10.1021/bm801515c
  3. H. Tsuji, M. Nakano, S. Katsura, and A. Mizuno, Biomacromolecules, 7, 3316 (2006). https://doi.org/10.1021/bm060786e
  4. A. Amgoune, C. M. Thomas, T. Roisnel, and J. F. Carpentier, Chem. Eur. J., 12, 169 (2006). https://doi.org/10.1002/chem.200500856
  5. M. J. Stanford and A. P. Dove, Chem. Soc. Rev., 39, 486 (2010). https://doi.org/10.1039/b815104k
  6. C. P. Radano, G. L. Baker, and M. R. Smith, J. Am. Chem. Soc., 122, 1552 (2000). https://doi.org/10.1021/ja9930519
  7. A. C. Albertsson and I. K. Varma, Biomacromolecules, 4, 1466 (2003). https://doi.org/10.1021/bm034247a
  8. W. K. Lee, Clean Technology, 17, 194 (2011).
  9. P. J. Dijkstra, H. Du, and J. Feijen, Polym. Chem., 2, 520 (2011). https://doi.org/10.1039/c0py00204f
  10. D. Bourissou, B. M. Vaca, A. Dumitrescu, M. Graullier, and F. Lacombe, Macromolecules, 38, 9993 (2005). https://doi.org/10.1021/ma051646k
  11. S. Csihony, T. T. Beaudette, A. C. Sentman, G. W. Nyce, and J. L. Hedrick, Adv. Synth. Catal., 346, 1081 (2004). https://doi.org/10.1002/adsc.200404097
  12. F. Nederberg, E. F. Connor, M. Moller, T. Glauser, and J. L. Hedrick, Angew Chem. Int. Ed., 40, 2712 (2001). https://doi.org/10.1002/1521-3773(20010716)40:14<2712::AID-ANIE2712>3.0.CO;2-Z
  13. M. Basko and P. Kubisa, J. Polym. Sci. Part A : Polym. Chem., 44, 7071 (2006). https://doi.org/10.1002/pola.21712
  14. O. D. Cabaret, B. M. Vaca, and D. Bourissou, Chem. Rev., 104, 6147 (2004). https://doi.org/10.1021/cr040002s
  15. J. Y. Yoo, D. H. Kim, and Y. S. Ko, Polymer(Korea), 36, 593 (2012).
  16. J. Y. Yoo and Y. S. Ko, Polymer(Korea), 36, 693 (2012).
  17. Y. H. Noh and Y. S. Ko, Polymer(Korea), 36, 1 (2012).
  18. J. Y. Yoo, Y. J. Kim, and Y. S. Ko, J. Ind. Eng. Chem., 19, 1137 (2013). https://doi.org/10.1016/j.jiec.2012.12.010
  19. H. R. kricheldorf, I. K. Saunders, and C. Boettcher, Polymer, 36, 1253 (1995). https://doi.org/10.1016/0032-3861(95)93928-F
  20. M. L. Shueh, Y. S. Wang, B. H. Huang, C. Y. Kuo, and C. C. Lin, Macromolecules, 37, 5155 (2004). https://doi.org/10.1021/ma049778l
  21. S. Csihony, D. A. Culkin, A. C. Sentman, A. P. Dove, and J. L. Hedrick, J. Am. Chem. Soc., 127, 9079 (2005). https://doi.org/10.1021/ja050909n
  22. J. L. Gorczynski, J. Chen, and C. L. Fraser, J. Am. Chem. Soc., 127, 14956 (2005). https://doi.org/10.1021/ja0530927
  23. D. J. Darensbourg, Chem. Rev., 107, 2388 (2007). https://doi.org/10.1021/cr068363q
  24. A. Finne and A. C. Albertsson, J. Polym. Sci. Part A : Polym. Chem., 42, 444 (2004). https://doi.org/10.1002/pola.10805
  25. A. Duda, Macromolecules, 29, 1399 (1996). https://doi.org/10.1021/ma951442b
  26. C. Jacobs, P. Dubois, R. Jerome, and P. Teyssie, Macromolecules, 24, 3027 (1991) https://doi.org/10.1021/ma00011a001
  27. J. L Espartero, I. Rashkov, S. M. Li, N. Manolova, and M. Vert, Macromolecules, 29, 3535 (1996). https://doi.org/10.1021/ma950529u
  28. L. M. Pitet, S. B. Hait, T. J. Lanyk, and D. M. Knauss, Macromolecules, 40, 2327 (2007). https://doi.org/10.1021/ma0618068
  29. A. K. Sudesh, H. Abe, and Y. Doi, Prog. Polym. Sci., 25, 1503 (2000). https://doi.org/10.1016/S0079-6700(00)00035-6

Cited by

  1. Ti(dibenzoylmethane)2(O-i-Pr)2 합성과 L-락티드 개환중합 vol.42, pp.2, 2018, https://doi.org/10.7317/pk.2018.42.2.261