DOI QR코드

DOI QR Code

전자선 조사를 통한 EPDM/Polyamide12 탄성체의 제조에 관한 연구

Preparation of EPDM/Polyamide12 Elastomers through Electron Beam Irradiation

  • 정효신 (세종대학교 나노신소재공학과 및 고분자 연구소) ;
  • 박정일 (세종대학교 나노신소재공학과 및 고분자 연구소) ;
  • 강필현 (한국원자력연구원 첨단방사선연구소) ;
  • 최명찬 (한양대학교 화학공학과) ;
  • 장영욱 (한양대학교 화학공학과) ;
  • 홍성철 (세종대학교 나노신소재공학과 및 고분자 연구소)
  • Jung, Hyo Shin (Faculty of Nanotechnology and Advanced Materials Engineering, Sejong Polymer Research Center, Sejong University) ;
  • Park, Jung Il (Faculty of Nanotechnology and Advanced Materials Engineering, Sejong Polymer Research Center, Sejong University) ;
  • Kang, Phil-Hyun (Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute) ;
  • Choi, Myung Chan (Department of Chemical Engineering, Hanyang University) ;
  • Chang, Young-Wook (Department of Chemical Engineering, Hanyang University) ;
  • Hong, Sung Chul (Faculty of Nanotechnology and Advanced Materials Engineering, Sejong Polymer Research Center, Sejong University)
  • 투고 : 2013.02.23
  • 심사 : 2013.05.26
  • 발행 : 2013.09.25

초록

다양한 조성의 ethylene propylene diene rubber(EPDM)/polyamide12(PA12) 용융 혼합물에 전자선 조사를 함으로써 열가소성 탄성체(thermoplastic elastomer, TPE)의 특성을 보이는 소재를 제조하였다. EPDM과 PA12 상 사이의 상용화제로 말레산화 EPDM(mEPDM)을 첨가함으로써 EPDM/PA12 용융 혼합물의 기계적 물성을 향상시켰다. 또한 EPDM/PA12 용융 혼합물에 0~100 kGy의 전자선을 조사함으로써 EPDM 사슬간의 선택적인 가교 반응을 유도함과 동시에 PA12 상으로부터 용융 유동성을 확보할 수 있었다. 결과적으로 EPDM/PA12 용융 혼합물에 mEPDM을 첨가한 후 전자선을 25 kGy 조사함에 의하여 열가소성 용융 거동을 보이면서도 물성 및 탄성체 성질이 우수한 EPDM/PA12 용융 혼합물을 제조할 수 있었다.

Polyamide12 (PA12) is blended with ethylene propylene diene rubber (EPDM) at various compositions in the presence of maleated EPDM (mEPDM) to afford blend materials having the characteristics of thermoplastic elastomer (TPE). The EPDM/PA12 melt-blends are further irradiated with electron-beam (e-beam) at 0~100 kGy dosage, yielding selective crosslinking between EPDM chains while retaining melt-processibility originated from PA12 phase. mEPDM acts as a compatibilizer and affords additional improvements in mechanical properties of the EPDM/PA12 blend. With 25 kGy of e-beam irradiation and mEPDM, the EPDM/PA12 blends successfully exhibit TPE behaviors with reasonable elastomeric and mechanical properties.

키워드

과제정보

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. N. R. Legge, Rubber Chem. Technol., 60, 83 (1987). https://doi.org/10.5254/1.3536141
  2. G. Holden, Thermoplastic Elastomers, Wiley Online Library, 2002.
  3. A. M. Gessler and W. H. Haslett, U.S.Patent 3,037,954 (1962).
  4. W. Fisher, U.S.Patent 3,758,643 (1973).
  5. A. Y. Coran and R. Patel, Rubber Chem. Technol., 53, 141 (1980). https://doi.org/10.5254/1.3535023
  6. S. Abdou-Sabet and R. P. Patel, Rubber Chem. Technol., 64, 769 (1991). https://doi.org/10.5254/1.3538589
  7. R. Babu and K. Naskar, Adv. Polym. Sci., 239, 219 (2011).
  8. K. Naska, U. Gohs, and U. Wagenknecht, Express Polym. Lett., 13, 677 (2009).
  9. D. W. Clegg and A. A. Collyer, Irradiation Effects on Polymers, Springer, Lodon, 1991.
  10. G. Bohm and J. Tveekrem, Rubber Chem. Technol., 55, 575 (1982). https://doi.org/10.5254/1.3535898
  11. S. Chattopadhyay, T. K. Chaki, and A. K. Bhowmick, J. Mater. Sci., 36, 4323 (2001). https://doi.org/10.1023/A:1017989526538
  12. T. Glauser, M. Johansson, and A. Hult, Polymer, 40, 5297 (1999). https://doi.org/10.1016/S0032-3861(98)00752-6
  13. A. Chapiro, Radiation Chemistry of Polymeric Systems, Interscience, New York, 1962.
  14. M. Aoshima, T. Jinno, and T. Sassa, Kaut. Gummi. Kunstst., 45, 644 (1992).
  15. P. S. Majumder and A. K. Bhowmick, Radiat. Phys. Chem., 53, 63 (1999). https://doi.org/10.1016/S0969-806X(97)00296-X
  16. J. Konar and A. K. Bhowmick, J. Adhes. Sci. Technol., 8, 1169 (1994). https://doi.org/10.1163/156856194X01013
  17. R. Chowdhury and M. Banerji, J. Appl. Polym. Sci., 97, 968 (2005). https://doi.org/10.1002/app.21795
  18. L. Nethsinghe and M. Gilbert, Polymer, 29, 1935 (1988). https://doi.org/10.1016/0032-3861(88)90164-4
  19. C. Rosales, S. Lopez-Quintana, I. Gobernado-Mitre, J. Merino, and J. Pastor, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 265, 156 (2007). https://doi.org/10.1016/j.nimb.2007.08.043
  20. S. Lopez-Quintana, C. Rosales, I. Gobernado-Mitre, J. Merino, and J. Pastor, Polymer, 45, 8041 (2004). https://doi.org/10.1016/j.polymer.2004.08.039
  21. B.-S. Shin, J.-P. Jeun, H.-B. Kim, and P.-H. Kang, Polym.-Korea, 35, 30 (2011).
  22. S. V. Levchik, E. D. Weil, and M. Lewin, Polym. Int., 48, 532 (1999). https://doi.org/10.1002/(SICI)1097-0126(199907)48:7<532::AID-PI214>3.0.CO;2-R
  23. S. K. Datta, A. K. Bhowmick, D. Tripathy, and T. K. Chaki, J. Appl. Polym. Sci., 60, 1329 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960531)60:9<1329::AID-APP8>3.0.CO;2-L
  24. H. Huang, J. Yang, X. Liu, and Y. Zhang, Eur. Polym. J., 38, 857 (2002). https://doi.org/10.1016/S0014-3057(01)00270-1
  25. S.-S. Choi and O.-B. Kim, Elast. Compos., 46, 138 (2011).
  26. C. Y. Park and Y.-B. Hwang, Elast. Compos., 46, 329 (2011).
  27. L. Spenadel, Radiat. Phys. Chem., 14, 683 (1979). https://doi.org/10.1016/0146-5724(79)90104-3
  28. M. Van Duin, M. Aussems, and R. J. M. Borggreve, J. Polym. Sci. Part A: Polym. Chem., 36, 179 (1998). https://doi.org/10.1002/(SICI)1099-0518(19980115)36:1<179::AID-POLA22>3.0.CO;2-F
  29. J. Ma, Y. Feng, J. Xu, M. Xiong, Y. Zhu, and L. Zhang, Polymer, 43, 937 (2002). https://doi.org/10.1016/S0032-3861(01)00626-7
  30. J. H. Mo, J. S. Lee, I. C. Choi, W. K. Lee, S. B. Park, S. K. Min, and C. Y. Park, Elast. Compos., 47, 162 (2012). https://doi.org/10.7473/EC.2012.47.2.162
  31. S. Chattopadhyay, T. Chaki, and A. K. Bhowmick, J. Appl. Polym. Sci., 79, 1877 (2001). https://doi.org/10.1002/1097-4628(20010307)79:10<1877::AID-APP170>3.0.CO;2-B
  32. S. Chattopadhyay, T. Chaki, D. Khastgir, and A. K. Bhowmick, Polym. Polym. Compos., 8, 345 (2000).