DOI QR코드

DOI QR Code

DIFFUSION PIECEWISE HOMOGENIZATION VIA FLUX DISCONTINUITY RATIOS

  • Sanchez, Richard (Commissariat a l'Energie Atomique et aux Energies Alternatives DEN/DANS/DM2S Service d'Etudes de Reacteurs et de Mathematiques Appliquees Laboratoire de Transport Stochastique et Deterministe CEA de Saclay) ;
  • Dante, Giorgio (Commissariat a l'Energie Atomique et aux Energies Alternatives DEN/DANS/DM2S Service d'Etudes de Reacteurs et de Mathematiques Appliquees Laboratoire de Transport Stochastique et Deterministe CEA de Saclay) ;
  • Zmijarevic, Igor (Commissariat a l'Energie Atomique et aux Energies Alternatives DEN/DANS/DM2S Service d'Etudes de Reacteurs et de Mathematiques Appliquees Laboratoire de Transport Stochastique et Deterministe CEA de Saclay)
  • Received : 2013.09.25
  • Accepted : 2013.10.02
  • Published : 2013.11.25

Abstract

We analyze piecewise homogenization with flux-weighted cross sections and preservation of averaged currents at the boundary of the homogenized domain. Introduction of a set of flux discontinuity ratios (FDR) that preserve reference interface currents leads to preservation of averaged region reaction rates and fluxes. We consider the class of numerical discretizations with one degree of freedom per volume and per surface and prove that when the homogenization and computing meshes are equal there is a unique solution for the FDRs which exactly preserve interface currents. For diffusion submeshing we introduce a Jacobian-Free Newton-Krylov method and for all cases considered obtain an 'exact' numerical solution (eight digits for the interface currents). The homogenization is completed by extending the familiar full assembly homogenization via flux discontinuity factors to the sides of regions laying on the boundary of the piecewise homogenized domain. Finally, for the familiar nodal discretization we numerically find that the FDRs obtained with no submesh (nearly at no cost) can be effectively used for whole-core diffusion calculations with submesh. This is not the case, however, for cell-centered finite differences.

Keywords

References

  1. J.J.. Lautard, S. Loubiere and C. Fedon-Magnaud, 'Three Dimensional Pin by Pin Core Diffusion Calculation,' Proc. IAEA Specialist Meeting on Advanced Calc. Methods for Power Reactors, Cadarache, France, Sept. 10-14, 1990.
  2. E. Nichita, 'Generalized Equivalence Theory for Checkerboard Configurations in Natural-Uranium CANDU Lattices,' Proc. Int. Mgt. PHYSOR 2010 -Advances in Reactor Physics to Power the Nuclear Renaissance, Pittsburgh, Pennsylvania, USA, May 9-14, 2010.
  3. R. Sanchez and I. Zmijarevic, 'Diffusion piecewise homogenization via discontinuity factors,' Int. Conf. on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Rio de Janeiro, Brazil, May 8-12, 2011.
  4. G. Dante, R. Sanchez and I. Zmijarevic, 'On pin-by-pin discontinuity factors,' Trans. Am. Nucl. Soc., San Diego, CA, USA, 1121-1123, Nov. 11-15, 2012.
  5. J.J. Herrero, N. Garcia-Herranz, D. Cuervo and C. Ahnert, 'Neighborhood-corrected interface discontinuity factors for multi-group pin-by-pin diffusion calculations for LWR,' Annals of Nucl. Eng., 46 106-115, 2012. https://doi.org/10.1016/j.anucene.2012.03.022
  6. D.A. KNOLL and D.E. KEYES, 'Jacobian-free Newton- Krylov Method: a survey of approaches and applications,' J. Comp. Physics, 193, 357-397, 2004. https://doi.org/10.1016/j.jcp.2003.08.010
  7. K.S. Smith, 'Assembly Homogenization Techniques for Light Water Reactor Analysis,' Progress in Nucl. Energy, Vol. 17, No. 3, 303-335, 1986. https://doi.org/10.1016/0149-1970(86)90035-1
  8. R. Sanchez, "Assembly homogenization techniques for core calculations," Progress in Nucl. Energy., 51 14-31, 2009. https://doi.org/10.1016/j.pnucene.2008.01.009
  9. A. Hebert, 'A Consistent Technique for the Pin-by-Pin Homogenization of a Pressurized Water Reactor Assembly,' Nucl. Sci. Eng., 113, 227-238, 1993. https://doi.org/10.13182/NSE92-10
  10. A. Hébert and G. Mathonnière, 'Development of a Third- Generation Superhomogenization Method for the Homogenization of a Pressurized Water Reactor Assembly,' Nucl. Sci. Eng., 115, 129, 1993. https://doi.org/10.13182/NSE115-129
  11. R.D. Lawrence, 'Progress in nodal methods for the solution of the neutron diffusion and transport equations,' Progress in Nuclear Energy, 17 (3), 271-301, 1986. https://doi.org/10.1016/0149-1970(86)90034-X
  12. G. Dante, 'Piecewise assembly homogenization via flux discontinuity factors,' master thesis, Politecnico di Torino, 2012.
  13. M.J. Halsall, 'The CACTUS Transport Method in WIMS,' Proc. IAEA Specialist Meeting on Advanced Calc. Methods for Power Reactors, Cadarache, France, Sept. 10-14, 1990.
  14. K.S. Smith, 'An analytic nodal method for solving the two-group, multidimensional, static and transient neutron diffusion equations, Nuclear Eng. Thesis, Massachusetts Institute of Technology, 1979.