Journal of Adhesion and Interface Vol.14, No.1, 2013

Pd²⁺ 검출용 고감도 형광화학센서

왕 정^{1,2†}·하창식^{2†}

¹Guangxi University 화학 및 화학공학과, ²부산대학교 고분자공학과 (2013년 1월 22일 접수, 2013년 3월 4일 수정, 2013년 3월 11일 채택)

Highly Sensitive and Selective Fluorescent Chemosensors Specific for Pd²⁺ Detection

Jing Wang^{1,2†} and Chang-Sik Ha^{2†}

¹School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China ²Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Korea (Received January 22, 2013; Revised March 4, 2013; Accepted March 11, 2013)

요 약: 팔라듐은 치과 및 의료용 기구, 의료용 재료, 보석 및 자동차, 고기능성 점·접착제 등을 생 산하는데 중요한 역할을 한다. 팔라듐을 이용하는 반응에서의 중요성에도 불구하고 팔라듐은 최종생 성물에 잔존할 경우 인체에 해로운 독성을 가지고 있다. 그 중에서도 특히 PdCl₂는 독성이 가장 크 다. 따라서 Pd²⁺ 이온 검출은 매우 중요한 연구과제인데 그 중에서도 특히 형광분석법은 가장 손쉽 고 경제적이면서 감도가 높고 선택성이 높은 방법으로 알려져 있다. 본 연구에서는 알파-카보닐로 치 환된 파이렌 유도체인 감마-옥소-1-파이렌부틸산(OPBA)이 수용액에 금속이온으로 감도가 크고 선택 성이 우수한 것으로 밝혀졌다.

Abstract: Palladium plays a pivotal role in the production of dental and medicinal devices, medicinal substances, jewellery, automobile and high-performance adhesives. Despite the frequent and fruitful use of such reactions, one major setback is the high level of palladium in the resultant compounds which can harm the human body. Among the palladium species, PdCl₂ is the most toxic. As a consequence it is desirable to detect the Pd²⁺ cations by fluorescence spectra because it can provide an operationally simple and cost-effective detection method together with high sensitivity and selectivity. Herein, an α -carbonyl substituted pyrene derivative, γ -oxo-1-pyrenebutyric acid (OPBA), was demonstrated to be a highly sensitive and selective fluorescent probe for Pd²⁺ among the metal cations examined in aqueous solutions.

Keywords: Pd^{2^+} cations, γ -oxo-1-pyrenebutyric acid (OPBA), chemosensor

1. Introduction

The development of artificial receptors for the sensing and recognition of environmentally and biologically important species has been actively investigated in recent years[1,2]. Palladium is a rare transition metal that plays a pivotal role in the production of dental and medicinal devices, jewellery, automobile, and high-performance adhesives[3-5]. Moreover, organic synthesis that uses palladium as the catalyst is widely applied in the production of medicinal substances. Despite the frequent and fruitful use of such reactions, one major setback is the high level of palladium in the resultant compounds which can harm the human body[6,7]. Among the palladium species, $PdCl_2$ is the most toxic[8]. As a consequence it is desirable to develop efficient methods for detecting the presence of Pd^{2+} cations. Fluorescence spectra stands out because it can provide an operationally simple and cost-effective detection method together with high sensitivity and selectivity[9,10] compared to the other typical analytical methods used for quantification of Pd^{2+} cations.

[†]Corresponding author: Jing Wang (wjwyj82@gxu.edu.cn), Chang-Sik Ha (csha@pnu.edu)

The pyrene moiety is one of the most useful fluorophores for the construction of fluorogenic chemosensors for a variety of important chemical species as the good photophysical properties[11-13]. Particularly, utilizing the pyrene moiety of monomer versus excimer emission, a variety of heavy and transition metal ions (HTM) recognition systems were successfully devised[14-19]. However, less attention was paid to the applications of α -carbonyl substituted pyrene chromophores, a special class of pyrene derivatives. To date, only a few studies have reported that employed α -carbonyl substituted pyrene derivatives in sensing systems[20]. Especially, the metal chemosensors constructed by α -carbonyl substituted pyrene derivatives is rare[21]. Based on these above information, we explored the application of γ -oxo-1-pyrenebutyric acid (OPBA), with a carbonyl group substituted on the α -position of the pyrene chromophore, as a selective and sensitive fluorescent chemosensor specific for Pd²⁺ detection. We hope that the efforts made in this work will contribute to the development of metal chemosensors based on α -carbonyl substituted pyrene derivatives.

2. Experimental

2.1. Materials and Instrumentations

All solvents used were of analytical grade. γ -Oxo-1-pyrenebutyric acid (OPBA), 1-pyrenebutyric acid (PBA) and 1-pyrene-carboxaldehyde (PyCHO) were all purchased from Sigma-Aldrich. The Fourier-Transform Infrared (FTIR) spectra were recorded at room temperature on a JASCO FTIR 460 Plus operated at a resolution 4 cm⁻¹. ¹H-NMR spectra were recorded on a Varian Gemimi-2000 (300 MHz) spectrometer. The UV-Vis spectra were measured using a Hitachi U-2010 spectrometer. The fluorescence spectra were measured using a Hitachi F-4500 spectrometer. A pH 64 Radiometer (Copenhagen, Denmark) combined with a GK 2401 B electrode was used for the pH measurements.

2.2. Preparation of OPBA Solutions for the Concentration Effect

2.2.1. Studies on the Fluorescence Spectra

12.0 mM solutions of OPBA (0.1825 g, 0.6 mmol) were prepared in dimethylsulfoxide (DMSO) (5 mL), then diluted 2 times with H₂O to get the 6.0 mM stock solutions. The stock solutions of OPBA (6.0 mM) were diluted by using DMSO/H₂O (1/1, v/v) to get the solutions of OPBA ranging from 3.0 mM to 0.5 μ M. The fluorescence spectra

of each solution were recorded with excitation at 480 nm.

2.2.2. Studies on the Absorption Spectra

50.0 μ M solutions of OPBA (0.76 mg, 2.5 μ mol) were prepared in DMSO (5 mL) to get the 50 μ M stock solutions. 2 mL of OPBA stock solutions were diluted 50 times by using H₂O to get the 1.0 μ M solutions of OPBA in DMSO/H₂O (2/98, v/v). 3.0 mL of OPBA solution at 1.0 μ M in DMSO/H₂O (2/98, v/v) was placed in quartz cell (10.0 mm width) and the absorption spectra were recorded.

2.3. Preparation of Solutions for the Fluorescent Detection of Metal Ions by OPBA

0.48 mM solutions of OPBA (0.0073 g, 0.024 mmol), pyrene (0.0049 g, 0.024 mmol), PBA (0.007 g, 0.024 mmol), and PyCHO (0.0055 g, 0.024 mmol) were prepared in DMSO (50 mL), then diluted 240 times with H₂O to get the 2 µM stock solutions. The total volume of DMSO contained in the 2 mM stock solutions was below 0.5%. All of the metal ion stock solutions were prepared at 0.4 mM in H₂O. 1.5 mL of OPBA stock solution was placed in quartz cell (10.0 mm width) and the fluorescence spectra were recorded before and after the addition of 1.5 mL stock solutions of metal ions (200.0 equiv.) to the solution of 1.5 mL OPBA. The metal recognition behavior of OPBA was evaluated from the changes in fluorescence spectra at the emission wavelength of 455 nm upon addition of that sodium salt. The fluorescence spectra of each solution were recorded with excitation at 480 nm.

2.4. Preparation of Solutions for the Sensing of Pd²⁺ by OPBA

A stock solution of OPBA (2.0 μ M) was prepared as illustrated in section 2.3. The solution of PdCl₂ was introduced in portions and the fluorescence intensity changes were recorded at room temperature each time.

2.5. Preparation of Solutions for the ¹H NMR and IR Studies

20 μ M stock solution of OPBA was prepared similar to the procedures shown in section 2.3. 0.12 mM stock solution of PdCl₂ was prepared. The stock solution of OPBA was diluted 2 times by using water and by using the PdCl₂ stock solution, respectively. After several minutes, the ¹H NMR and IR spectra of samples OPBA (1.0 μ M) and OPBA-Pd²⁺ (1.0 μ M / 6.0 μ M) were recorded.

Scheme 1. (a) Chemical structures of γ -oxo-1-pyrenebutyric acid (OPBA), 1-pyrenebutyric acid (PBA) and 1-pyrene-carboxaldehyde (PyCHO); (b) proposed Pd²⁺ sensing process.

Figure 1. Fluorescence spectra of OPBA with different concentrations (0.6 × 10⁻³ M) in DMSO/H₂O (1 : 1 (v/v), λ_{ex} = 340 nm).

3. Results and Discussion

3.1. Photophysical Properties of OPBA

The fluorescence spectra of OPBA (Scheme 1(a)) were recorded with different concentrations (0.6 × 10⁻³ M) in DMSO/H₂O (1 : 1 (v/v), $\lambda_{ex} = 340$ nm). The fluorescence emission intensity of OPBA at 440 nm increased in the

concentration range of 0.5×10^{-5} M (Figure 1). Further increasing the concentration above 1×10^{-4} M, the emission of OPBA was red-shifted and significantly decreased, when the concentration of OPBA was at 6×10^{-3} M, the monomer emission at 440 nm completely disappeared and a new emission peak at approximately 518 nm appeared due to the excimer formation of pyrene chromophore on OPBA

Figure 2. (a) Fluorescence spectra of OPBA (6×10^{-3} M) in DMSO/H₂O (1 : 1 (v/v), $\lambda_{ex} = 340$ nm), (b) the plot of $\lambda_{em} = 455$ nm versus the concentration of OPBA (0.1×10^{-5} M), (c) UV-Vis absorption spectra of OPBA (1×10^{-6} M) in aqueous solutions (DMSO/H₂O, 2 : 98 (v/v)).

(Figures 1 and 2(a))[22-25]. In the concentration range of 0.1×10^5 M (Figure 2(b)), the emission of OPBA at 440 nm versus the concentration of OPBA revealed a linear relationship (R = 0.996). The concentration of OPBA was selected at 1×10^{-6} M for all of the following experiments in aqueous solutions (DMSO/H₂O (2 : 98, (v/v)).

As shown in Figure 2(c), the absorption spectra of OPBA $(1 \times 10^{-6} \text{ M})$ shows an intense band centered at 351 nm, while in the emission spectra the monomer emission maxima of OPBA $(1 \times 10^{-6} \text{ M})$ was about 455 nm (Figure 3(a))[26]. The Stokes'shift was calculated from the difference in the absorption and the emission maxima to be 104 nm. Moreover, with increasing the water content, we observed strong red shift of the fluorescence emission band from 440 nm (DMSO/H₂O (1 : 1 (v/v)), Figure 1) to 455 nm (DMSO/H₂O (2 : 98 (v/v)), Figure 3) which can be attributed to the fact that hydrogen bonding raises the energy of the triplet ${}^{3}n-\pi^{*}$ excited states) above the lowest singlet ${}^{1}\pi - \pi^{*}$ excited states thereby reducing the efficiency of the intersystem crossing[24,26].

3.2. Fluorescence Detection of Pd²⁺ Cations

Upon titration with Pd^{2+} (0.2 × 10⁻⁵ M), the fluorescence intensity of the monomer emission maximum at 455 nm decreased gradually with the increase of Pd^{2+} concentration (Figure 3(a)). The fluorescence intensities at 455 nm are linearly proportional to the amount of Pd^{2+} in the range of 0.2 × 10⁻⁵ M (Figure 3(b)) which demonstrated that the Pd^{2+} ions can be detected quantitatively in the concentration range of 0.2 × 10⁻⁵ M. This curve (Figure 3(b)) can also be served as the calibration curve for the detection of Pd^{2+} , the detection limit of Pd^{2+} was calculated

Figure 3. (a) Fluorescence emission spectra of OPBA (1 \times 10⁻⁶ M) in the presence of different amounts of Pd²⁺ cations (0.2 \times 10⁻⁵ M); (b) fluorescence emission of OPBA at 455 nm versus the concentration of the added Pd²⁺ cations.

to be approximately 0.14 μ m[12]. It was assumed that the FL changes was induced by the 2 : 1 complex for-

Figure 4. (a) Plot of $1/(I-I_0)$ versus $(1/[Pd]^{2^+})^{1/2}$ based on 2 : 1 binding stoichiometry between OPBA and Pd²⁺, (b) Plot of $I_0/(I-I_0)$ versus $[Pd^{2^+}]^{-1}$ based on 1 : 1 binding stoichiometry, and (c) plot of $I_0/(I-I_0)$ versus $[Pd^{2^+}]^{-2}$ based on 1 : 2 stoichiometry (bottom) between OPBA and Pd²⁺. I_0 and I are the fluorescence intensity of OPBA at 455 nm in the absence and presence of Pd²⁺.

Figure 5. Job's plot of OPBA with Pd^{2+} . I and I_0 are the fluorescence intensity of OPBA in the presence and absence of Pd^{2+} , respectively; the total concentration of OPBA and Pd^{2+} is 10 μ M.

mation between OPBA and Pd^{2+} , the association constant was calculated to be $1.6 \times 10^3 \text{ M}^2$ (Figure 4)[27a]. Moreover,

The approximate Job's plot[27b] also suggests that OPBA forms a 2 : 1 complex with Pd^{2+} (Figure 5). There was no pyrene excimer emission in the 2 : 1 complex formed between OPBA and Pd^{2+} which suggested that the two pyrene chromophores are in the divergent position[11-21].

¹H-NMR experiments were carried out to confirm the coordination sites of OPBA with Pd²⁺. As shown in Figure 6, the proton (OH) signal at 11.4 ppm completely disappeared in the presence of Pd²⁺ which indicated the binding of Pd²⁺ with an oxygen atom on OH of the carboxyl group. This was due to Pd²⁺-induced deprotonation of the carboxyl group in OPBA during Pd²⁺ binding[28]. The peaks of protons in both of the pyrene-CO-CH₂- unit and CH₂-COO- unit were shifted to down-field which attributed to the deshielding effect arising from the decrease of the electron density caused by oxygen atoms-Pd²⁺ complexation in both of carbonyl group present in the carboxyl group. The chemical shifts of the aromatic protons in the pyrene moiety did not show any significant changes

Figure 6. ¹H NMR spectra of OPBA (1×10^{-5} M) in the absence (black lines) and presence (red lines) of Pd²⁺ (6×10^{-5} M).

Figure 7. Fluorescence emission of PBA (a) and PyCHO, (b) in the absence (red lines) and presence (black lines) of 20.0 equiv. of Pd²⁺ cations.

in the ¹H-NMR spectra, therefore, we were able to exclude the interaction of pyrene ring with Pd^{2+} .

At the same time, to further confirm the role of coordination sites during the sensing of OPBA to Pd^{2+} , we tested a pair of model compounds, 1-pyrene-carboxaldehyde (PyCHO) and 1-pyrene-butyric acid (PBA) (Scheme 1(a)). As shown in Figure 7, no spectral changes of PBA and PyCHO were induced by Pd^{2+} ions, implies that both of carbonyl and carboxyl groups on OPBA took part in chelating with Pd^{2+} . All of the three oxygen atoms in the ligating moiety OPBA play important roles in the combination of Pd^{2+} . The binding mode was suggested in Scheme 1(b).

In addition, the IR spectra of OPBA (1 \times 10⁻⁵ M) before

Figure 8. FTIR spectra of OPBA (1 \times 10⁻⁵ M) in the absence (a, black line) and presence (b, pink line) of Pd²⁺ (6 \times 10⁻⁵ M).

and after Pd^{2+} (6 × 10⁻⁵ M) exposure were investigated. As shown in Figure 8, not much difference was observed before and after Pd^{2+} binding. The reason may be explained as follows: in the IR spectra of OPBA, the characteristic vibrations of the C=O group and COOH group cannot be observed in water which may be due to the hydrogen bonding between OPBA and water, and the hydrogen bonded complex may be formed[26].

3.3. Effect of pH

The study performed pH titration of OPBA to investigate a suitable pH range for Pd²⁺ sensing. As depicted in Figure 9, after mixing OPBA with Pd²⁺, the emission intensity at 455 nm decreased between pH 2.5 and pH 4.5 and reached a minimum in the pH range of $4.5 \sim 7.0$. When the pH is higher than 7.0, the emission intensity increased. For pH < 4, the emission intensity is higher due to the protonation of the carboxyl groups that partially prevents the formation of OPBA-Pd²⁺ complexes. While the change in pH value does not disturb the detection of Pd^{2+} in the pH range of 5.0~7.0. On the other hand, when pH was 8.0, Pd²⁺ was easy to bind with OH anion and form Pd(OH)₂ precipitation in high pH solution, which would reduce its complexation with OPBA[29]. These results demonstrated that OPBA can work in the pH range of $5.0 \sim 7.0$ for Pd²⁺ detection. Moreover, the emission of OPBA was almost constant in the pH range of $6 \sim 10.5[30]$. Therefore, all of the detections of metal cations were operated at pH 6.5 in aqueous solutions.

Figure 9. Influence of pH on the fluorescence of OPBA (1 $\times 10^{-6}$ M) at 455 nm in the presence of Pd²⁺ (2 $\times 10^{-5}$ M) in aqueous solutions, $\lambda_{ex} = 340$ nm. The pH of solution was adjusted by aqueous solution of NaOH (1 M) or HCl (1 M).

3.4. Selectivity of OPBA Toward Pd²⁺ Cations

An important feature of the sensor is its high selectivity towards the target analyte over other competitive species. As shown in Figure 10, upon addition of various metal cations (200 equiv.), the monomer emission of OPBA at 455 nm decreased greatly in the presence of Pd²⁺, and quenched slightly by Cu²⁺ and Pb²⁺, while minimal changes were observed for the other investigated metals. However, even 100 equiv. of Cu²⁺ and Pb²⁺ did not induce the changes on the fluorescence emission of OPBA at 455 nm[30], thus, OPBA cannot be used as the probes for the detection of metal cations of Cu^{2+} and Pb^{2+} . To further investigate the selectivity for Pd²⁺ ions over other metal ions, interferences to the selective response of receptor OPBA to Pd²⁺ by coexisting ions were evaluated; no significant interference in detection of Pd2+ was observed in the presence of other competitive cations. These results suggested that OPBA can be used as a potential chemosensor for the Pd²⁺ ions.

3. Conclusions

In conclusion, γ -oxo-1-pyrenebutyric acid (OPBA) showed highly selective on-off fluorescence changes for Pd²⁺ among the other investigated metal cations. The binding stoichiometry was established to be 2 : 1 between OPBA and Pd²⁺ ions, with a binding constant of 1.6 × 10³ M². Moreover, the Pd²⁺ ions can be detected quantitatively in the concentration range of 0.2 × 10⁻⁵ M by OPBA.

Figure 10. Fluorescent emission changes of OPBA $(1 \times 10^{-6} \text{ M})$ at 455 nm in the presence of 200.0 equiv. of metal cations in aqueous solutions. Excitation wavelength was set at 340 nm.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education, Science and Technology, Korea (MEST) (Acceleration Research Program (No. 2012-0000108); the Pioneer Research Center Program (No. 2012-0000421/ 2012-0000422) and the MEST for the Brain Korea 21 Project.

References

- 1. B. Valeur and I. Leray, *Coord. Chem. Rev.*, **205**, 3 (2000).
- V. Amendola, L. Fabbrizzi, F. Forti, M. Licchelli, C. Mangano, P. Pallavicini, A. Poggi, D. Sacchi, and A. Taglieti, *Coord. Chem. Rev.*, 250, 273 (2006).
- F. Song, A. L. Garner, and K. Koide, J. Am. Chem. Soc., 129, 12354 (2007).
- 4. M. E. Jun and K. H. Ahn, Org. Lett., 12, 2790 (2010).
- H. Li, J. Fan, J. Du, K. Guo, S. Sun, X. Liu, and X. Peng, *Chem. Commun.*, 46, 1079 (2010).
- C. E. Garrett and K. Prasad, Adv. Synth. Catal., 346, 889 (2004).
- S. Y. Yu, H. W. Rhee, and J. I. Hong, *Tetrahedron. Lett.*, **52**, 1512 (2011).
- M. Santra, S. K. Ko, I. Shin, and K. H. Ahn, *Chem. Commun.*, 46, 3964 (2010).
- M. Sameiro and T. Gonçalves, *Chem. Rev.*, **109**, 190 (2009).
- 10. R. W. Sinkeldam, N. J. Greco, and Y. Tor, Chem. Rev.,

110, 2579 (2010).

- S. Y. Moon, N. J. Youn, S. M. Park, and S. K. Chang, J. Org. Chem., 70, 2394 (2005).
- Y. Zhou, C. Y. Zhu, X. S. Gao, X. Y. You, and C. Yao, *Org. Lett.*, **12**, 2566 (2010).
- L. Ma, H. Li, and Y. Wu, Sens. Actuators B-Chem., 143, 25 (2009).
- J. S. Kim, M. G. Choi, K. C. Song, K. T. No, S. Ahn, and S. K. Chang, Org. Lett., 9, 1129 (2007).
- S. M. Park, M. H. Kim, J. I. Choe, K. T. No, and S. K. Chang, J. Org. Chem., 72, 3550 (2007).
- Z. Xu, J. Yoon, and D. R. Spring, *Chem. Commun.*, 46, 2563 (2010).
- J. Xie, M. Menand, S. Maisonneuve, and R. Metivier, J. Org. Chem., 72, 5980 (2007).
- H. Zhang, L. F. Han, K. A. Zachariasse, and Y. B. Jiang, *Org. Lett.*, 7, 4217 (2005).
- (a) J. S. Yang, C. S. Lin, and C. Y. Hwang, Org. Lett., 3, 889 (2001); (b) H. C. Hung, C. W. Cheng, I. T. Ho, and W. S. Chung, Tetrahedron. Lett., 50, 302 (2009); (c) H. C. Hung, C. W. Cheng, Y. Y. Wang, Y. J. Chen, and W. S. Chung, Eur. J. Org. Chem., 36, 6360 (2009).
- 20. V. I. Vullev and G. Jones II, Tetrahedron Lett., 43,

8611 (2002).

- S. Karuppannan and J. C. Chambron, *Chem. Asian J.*, 6, 964 (2011).
- 22. A. Okamoto, K. Kanatani, and I. Saito, *J. Am. Chem. Soc.*, **126**, 4820 (2004).
- 23. G. Jones and V. I. Vullev, Org. Lett., 4, 4001 (2002).
- C. Armbruster, M. Knapp, K. Rechthaler, R. Schamschule, A. B. J. Parusel, G. Köhler, and W. Wehrmann, J. Photochem. Photobiol. A-Chem., 125, 29 (1999).
- 25. S. S. Bag, R. Kundu, K. Matsumoto, Y. Saito, and I. Saito, *Bioorg. Med. Chem. Lett.*, **20**, 3227 (2010).
- A. Jana, S. Atta, S. K. Sarkar, and N. D. P. Singh, *Tetrahedron*, 66, 9798 (2010).
- 27. (a) H. J. Kim, J. Hong, A. Hong, S. Ham, J. H. Lee, and J. S. Kim, *Org. Lett.*, **10**, 1963 (2008); (b) H. Y. Lee, D. R. Bae, J. C. Park, H. Song, W. S. Han, and J. H. Jung, *Angew. Chem., Int. Ed.*, **48**, 1239 (2009).
- S. P. Wu, T. H. Wang, and S. R. Liu, *Tetrahedron*, 66, 9655 (2010).
- 29. L. Duan, Y. Xu, and X. Qian, *Chem. Commun.*, 44, 6339 (2008).
- J. Wang, H. B. Liu, S. Park, S. Y. Kim, T. Joo, and C. S. Ha, *RSC Adv.*, 2, 4249 (2012).