DOI QR코드

DOI QR Code

Effect of ECQ on Iodoacetamide-Induced Chronic Gastritis in Rats

  • Lee, Se Eun (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Song, Hyun Ju (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Park, Sun Young (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Nam, Yoonjin (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Min, Chang Ho (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Lee, Do Yeon (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Jeong, Jun Yeong (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Ha, Hyun Su (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Kim, Hyun-Jung (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Whang, Wan Kyun (Department of Pharmacognosy, College of Pharmacy, Chung-Ang University) ;
  • Jeong, Ji Hoon (Department of Pharmacology, School of Medicine, Chung-Ang University) ;
  • Kim, In Kyeom (Department of Pharmacology, School of Medicine, Kyungpook National University) ;
  • Kim, Hak Rim (Department of Pharmacology, College of Medicine, Dankook University) ;
  • Min, Young Sil (Department of Medicinal Plant Science, College of Science and Engineering, Jungwon University) ;
  • Sohn, Uy Dong (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
  • Received : 2013.09.06
  • Accepted : 2013.09.17
  • Published : 2013.10.30

Abstract

This study investigated effect of extract containing quercetin-3-O-${\beta}$-D-glucuronopyranoside from Rumex Aquaticus Herba (ECQ) against chronic gastritis in rats. To produce chronic gastritis, the animals received a daily intra-gastric administration of 0.1 ml of 0.15% iodoacetamide (IA) solution for 7 days. Daily exposure of the gastric mucosa to IA induced both gastric lesions and significant reductions of body weight and food and water intake. These reductions recovered with treatment with ECQ for 7 days. ECQ significantly inhibited the elevation of the malondialdehyde levels and myeloperoxidase activity, which were used as indices of lipid peroxidation and neutrophil infiltration. ECQ recovered the level of glutathione, activity of superoxide dismutase (SOD), and expression of SOD-2. The increased levels of total NO concentration and iNOS expression in the IA-induced chronic gastritis were significantly reduced by treatment with ECQ. These results suggest that the ECQ has a therapeutic effect on chronic gastritis in rats by inhibitory actions on neutrophil infiltration, lipid peroxidation and various steps of reactive oxygen species (ROS) generation.

Keywords

References

  1. Selgrad M, Kandulski A, Malfertheiner P. Dyspepsia and Helicobacter pylori. Dig Dis. 2008;26:210-214. https://doi.org/10.1159/000121348
  2. den Hollander WJ, Kuipers EJ. Current pharmacotherapy options for gastritis. Expert Opin Pharmacother. 2012;13:2625-2636. https://doi.org/10.1517/14656566.2012.747510
  3. Elseweidy MM, Younis NN, Amin RS, Abdallah FR, Fathy AM, Yousif ZA. Effect of some natural products either alone or in combination on gastritis induced in experimental rats. Dig Dis Sci. 2008;53:1774-1784. https://doi.org/10.1007/s10620-008-0246-6
  4. Gretzer B, Ehrlich K, Maricic N, Lambrecht N, Respondek M, Peskar BM. Selective cyclo-oxygenase-2 inhibitors and their influence on the protective effect of a mild irritant in the rat stomach. Br J Pharmacol. 1998;123:927-935. https://doi.org/10.1038/sj.bjp.0701673
  5. Takahashi S, Fujita T, Yamamoto A. Nonsteroidal anti-inflammatory drug-induced acute gastric injury in Helicobacter pylori gastritis in Mongolian gerbils. Eur J Pharmacol. 2000;406:461-468. https://doi.org/10.1016/S0014-2999(00)00700-7
  6. Barnett K, Bell CJ, McKnight W, Dicay M, Sharkey KA, Wallace JL. Role of cyclooxygenase-2 in modulating gastric acid secretion in the normal and inflamed rat stomach. Am J Physiol Gastrointest Liver Physiol. 2000;279:G1292-1297. https://doi.org/10.1152/ajpgi.2000.279.6.G1292
  7. Bielefeldt K, Ozaki N, Gebhart GF. Mild gastritis alters voltage-sensitive sodium currents in gastric sensory neurons in rats. Gastroenterology. 2002;122:752-761. https://doi.org/10.1053/gast.2002.31901
  8. Ozaki N, Bielefeldt K, Sengupta JN, Gebhart GF. Models of gastric hyperalgesia in the rat. Am J Physiol Gastrointest Liver Physiol. 2002;283:G666-676. https://doi.org/10.1152/ajpgi.00001.2002
  9. Karmeli F, Okon E, Rachmilewitz D. Sulphydryl blocker induced gastric damage is ameliorated by scavenging of free radicals. Gut. 1996;38:826-831. https://doi.org/10.1136/gut.38.6.826
  10. Frei B, Stocker R, Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA. 1988;85:9748-9752. https://doi.org/10.1073/pnas.85.24.9748
  11. Wolin MS. Interactions of oxidants with vascular signaling systems. Arterioscler Thromb Vasc Biol. 2000;20:1430-1442. https://doi.org/10.1161/01.ATV.20.6.1430
  12. Mutoh H, Hiraishi H, Ota S, Yoshida H, Ivey KJ, Terano A, Sugimoto T. Protective role of intracellular glutathione against ethanol-induced damage in cultured rat gastric mucosal cells. Gastroenterology. 1990;98:1452-1459. https://doi.org/10.1016/0016-5085(90)91075-H
  13. Yoshikawa T, Naito Y, Kishi A, Tomii T, Kaneko T, Iinuma S, Ichikawa H, Yasuda M, Takahashi S, Kondo M. Role of active oxygen, lipid peroxidation, and antioxidants in the pathogenesis of gastric mucosal injury induced by indomethacin in rats. Gut. 1993;34:732-737. https://doi.org/10.1136/gut.34.6.732
  14. Reiter R, Tang L, Garcia JJ, Munoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci. 1997;60:2255-2271. https://doi.org/10.1016/S0024-3205(97)00030-1
  15. Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32:595-603. https://doi.org/10.1016/S0009-9120(99)00075-2
  16. Yoshikawa T, Minamiyama Y, Ichikawa H, Takahashi S, Naito Y, Kondo M. Role of lipid peroxidation and antioxidants in gastric mucosal injury induced by the hypoxanthine-xanthine oxidase system in rats. Free Radic Biol Med. 1997;23:243-250. https://doi.org/10.1016/S0891-5849(96)00625-9
  17. Zimmerman BJ, Granger DN. Oxygen free radicals and the gastrointestinal tract: role in ischemia-reperfusion injury. Hepatogastroenterology. 1994;41:337-342.
  18. Granger DN, Korthuis RJ. Physiologic mechanisms of postischemic tissue injury. Annu Rev Physiol. 1995;57:311-332. https://doi.org/10.1146/annurev.ph.57.030195.001523
  19. Elliott SN, Wallace JL. Neutrophil-mediated gastrointestinal injury. Can J Gastroenterol. 1998;12:559-568. https://doi.org/10.1155/1998/398384
  20. Meister A, Anderson ME. Glutathione. Annu Rev Biochem. 1983;52:711-760. https://doi.org/10.1146/annurev.bi.52.070183.003431
  21. Rachmilewitz D, Karmeli F, Okon E. Sulfhydryl blocker-induced rat colonic inflammation is ameliorated by inhibition of nitric oxide synthase. Gastroenterology. 1995;109:98-106. https://doi.org/10.1016/0016-5085(95)90273-2
  22. Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52:673-751.
  23. Moreira AJ, Fraga C, Alonso M, Collado PS, Zetller C, Marroni C, Marroni N, Gonzalez-Gallego J. Quercetin prevents oxidative stress and NF-kappaB activation in gastric mucosa of portal hypertensive rats. Biochem Pharmacol. 2004;68:1939-1946. https://doi.org/10.1016/j.bcp.2004.07.016
  24. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74:418-425. https://doi.org/10.1093/ajcn/74.4.418
  25. Chow JM, Shen SC, Huan SK, Lin HY, Chen YC. Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem Pharmacol. 2005;69:1839-1851. https://doi.org/10.1016/j.bcp.2005.03.017
  26. Kahraman A, Erkasap N, Köken T, Serteser M, Aktepe F, Erkasap S. The antioxidative and antihistaminic properties of quercetin in ethanol-induced gastric lesions. Toxicology. 2003;183:133-142. https://doi.org/10.1016/S0300-483X(02)00514-0
  27. Min YS, Lee SE, Hong ST, Kim HS, Choi BC, Sim SS, Whang WK, Sohn UD. The inhibitory effect of quercetin-3-O-beta- D-glucuronopyranoside on gastritis and reflux esophagitis in rats. Korean J Physiol Pharmacol. 2009;13:295-300. https://doi.org/10.4196/kjpp.2009.13.4.295
  28. Kwak HS, Park SY, Nguyen TT, Kim CH, Lee JM, Suh JS, Whang WK, Sohn UD. Protective effect of extract from Rumex aquaticus herba on ethanol-induced gastric damage in rats. Pharmacology. 2012;90:288-297. https://doi.org/10.1159/000342767
  29. Yoon HM, Park JY, Oh MH, Kim KH, Han JH, Whang WK. A new acetophenone of aerial parts from rumex aquatica. Nat Prod Sci. 2005;11:75-78.
  30. Grisham MB, Benoit JN, Granger DN. Assessment of leukocyte involvement during ischemia and reperfusion of intestine. Methods Enzymol. 1990;186:729-742. https://doi.org/10.1016/0076-6879(90)86172-R
  31. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-888.
  32. Szabo S. Peptides, sulfhydryls, and glucocorticoids in gastric mucosal defense: coincidence or connection? Gastroenterology. 1984;87:228-229.
  33. Takeeda M, Yamato M, Kato S, Takeuchi K. Cyclooxygenase isozymes involved in adaptive functional responses in rat stomach after barrier disruption. J Pharmacol Exp Ther. 2003;307:713-719. https://doi.org/10.1124/jpet.103.054973
  34. Nishio H, Hayashi Y, Terashima S, Takeuchi K. Role of endogenous nitric oxide in mucosal defense of inflamed rat stomach following iodoacetamide treatment. Life Sci. 2006;79:1523-1530. https://doi.org/10.1016/j.lfs.2006.04.013
  35. Hiruma-Lima CA, Gracioso JS, Bighetti EJ, Grassi-Kassisse DM, Nunes DS, Brito AR. Effect of essential oil obtained from Croton cajucara Benth. on gastric ulcer healing and protective factors of the gastric mucosa. Phytomedicine. 2002;9:523-529. https://doi.org/10.1078/09447110260573155
  36. Lewis DA. Anti-inflammatory drugs from plant and marine sources. Agents Actions Suppl. 1989;27:3-373. https://doi.org/10.1007/BF02222183
  37. Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med. 2004;36:838-849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001
  38. Rice-Evans C. Flavonoid antioxidants. Curr Med Chem. 2001;8:797-807. https://doi.org/10.2174/0929867013373011
  39. Mascolo N, Pinto A, Capasso F. Flavonoids, leucocyte migration and eicosanoids. J Pharm Pharmacol. 1988;40:293-295. https://doi.org/10.1111/j.2042-7158.1988.tb05250.x
  40. Landolfi R, Mower RL, Steiner M. Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure-activity relations. Biochem Pharmacol. 1984;33:1525-1530. https://doi.org/10.1016/0006-2952(84)90423-4
  41. Hossion AM, Zamami Y, Kandahary RK, Tsuchiya T, Ogawa W, Iwado A, Sasaki K. Quercetin diacylglycoside analogues showing dual inhibition of DNA gyrase and topoisomerase IV as novel antibacterial agents. J Med Chem. 2011;54:3686-3703. https://doi.org/10.1021/jm200010x
  42. Scambia G, Ranelletti FO, Benedetti Panici P, Piantelli M, Bonanno G, De Vincenzo R, Ferrandina G, Pierelli L, Capelli A, Mancuso S. Quercetin inhibits the growth of a multidrugresistant estrogen-receptor-negative MCF-7 human breast-cancer cell line expressing type II estrogen-binding sites. Cancer Chemother Pharmacol. 1991;28:255-258. https://doi.org/10.1007/BF00685531
  43. Carrasco-Pozo C, Mizgier ML, Speisky H, Gotteland M. Differential protective effects of quercetin, resveratrol, rutin and epigallocatechin gallate against mitochondrial dysfunction induced by indomethacin in Caco-2 cells. Chem Biol Interact. 2012;195:199-205. https://doi.org/10.1016/j.cbi.2011.12.007
  44. Dai X, Ding Y, Zhang Z, Cai X, Li Y. Quercetin and quercitrin protect against cytokine-induced injuries in RINm5F ${\beta}$-cells via the mitochondrial pathway and NF-${\kappa}B$ signaling. Int J Mol Med. 2013;31:265-271. https://doi.org/10.3892/ijmm.2012.1177
  45. Formica JV, Regelson W. Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33:1061-1080. https://doi.org/10.1016/0278-6915(95)00077-1
  46. Cho JH, Park SY, Lee HS, Whang WK, Sohn UD. The Protective Effect of Quercetin-3-O-${\beta}$-D-Glucuronopyranoside on Ethanol-induced Damage in Cultured Feline Esophageal Epithelial Cells. Korean J Physiol Pharmacol. 2011;15:319-326. https://doi.org/10.4196/kjpp.2011.15.6.319
  47. Yan XM, Joo MJ, Lim JC, Whang WK, Sim SS, Im C, Kim HR, Lee SY, Kim IK, Sohn UD. The effect of quercetin-3-O-${\beta}$-D-glucuronopyranoside on indomethacin-induced gastric damage in rats via induction of mucus secretion and down-regulation of ICAM-1 expression. Arch Pharm Res. 2011;34:1527-1534. https://doi.org/10.1007/s12272-011-0915-4
  48. Ohta Y, Kobayashi T, Ishiguro I. Participation of xanthine-xanthine oxidase system and neutrophils in development of acute gastric mucosal lesions in rats with a single treatment of compound 48/80, a mast cell degranulator. Dig Dis Sci. 1999;44:1865-1874. https://doi.org/10.1023/A:1018803025043
  49. Chandranath SI, Bastaki SM, Singh J. A comparative study on the activity of lansoprazole, omeprazole and PD-136450 on acidified ethanol- and indomethacin-induced gastric lesions in the rat. Clin Exp Pharmacol Physiol. 2002;29:173-180. https://doi.org/10.1046/j.1440-1681.2002.03626.x
  50. Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol. 1998;274:R577-595. https://doi.org/10.1152/ajpcell.1998.274.3.C577
  51. Shirin H, Pinto JT, Liu LU, Merzianu M, Sordillo EM, Moss SF. Helicobacter pylori decreases gastric mucosal glutathione. Cancer Lett. 2001;164:127-133. https://doi.org/10.1016/S0304-3835(01)00383-4
  52. Rathinam ML, Watts LT, Stark AA, Mahimainathan L, Stewart J, Schenker S, Henderson GI. Astrocyte control of fetal cortical neuron glutathione homeostasis: up-regulation by ethanol. J Neurochem. 2006;96:1289-1300. https://doi.org/10.1111/j.1471-4159.2006.03674.x
  53. Lee JM, Im WJ, Nam YJ, Oh KH, Lim JC, Whang WK, Sohn UD. Acute toxicity and general pharmacological action of QGC EXT. Korean J Physiol Pharmacol. 2012;16:49-57. https://doi.org/10.4196/kjpp.2012.16.1.49

Cited by

  1. Effect ofRumex Aquaticus HerbaExtract AgainstHelicobacter pylori-Induced Inflammation in Gastric Epithelial Cells vol.19, pp.1, 2016, https://doi.org/10.1089/jmf.2015.3473
  2. Prodigiosins from a marine sponge-associated actinomycete attenuate HCl/ethanol-induced gastric lesion via antioxidant and anti-inflammatory mechanisms vol.14, pp.6, 2013, https://doi.org/10.1371/journal.pone.0216737
  3. SR-5, the specific ratio of Korean multi-herbal formula: An evaluation of antiulcerogenic effects on experimentally induced gastric ulcers in mice vol.19, pp.4, 2021, https://doi.org/10.1177/15593258211044329