DOI QR코드

DOI QR Code

Sequential Nonlinear Recurrence Quantification Analysis of Attentional Visual Evoked Potential

집중 시각자극 유발전위의 순차적 비선형 RQA 분석

  • Lee, Byung-Chae (Department of Medical Information system, Yong-In Songdam College) ;
  • Yoo, Sun-Kook (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Kim, Hye-Jin (Graduate School of Biomedical Engineering, Yonsei University)
  • 이병채 (용인송담대학교 의료정보과) ;
  • 유선국 (연세대학교 의과대학 의학공학교실) ;
  • 김혜진 (연세대학교 생체공학협동과정)
  • Received : 2013.07.25
  • Published : 2013.11.25

Abstract

The analysis of electroencephalographic signal associated with the attention is essential for the understanding of human cognition. In this paper, the characteristic differences between the attention and inattention status in the brain were inspected by nonlinear analysis. The recurrence quantification analysis was applied to the relatively small number of samples of evoked potential having time varying characteristics, where the recurrence plot (RP), the color recurrence plot (CRP), and mean and time-sequential trend parameters were extracted. The dimension and the time delay in phase transformation can be determined by the paired set of extracted parameters. It is observed from RP, CRP, and parameters that the brain dynamics in attention is more complex than that in the inattention, as well as the synchronized brain response is stable in the mean sense but locally time varying. It is feasible that the non-linear analysis method can be useful for the analysis of complex brain dynamics associated during visual attentional task.

집중에 관한 뇌파 해석은 인간의 인지 이해에 기본적인 요소이다. 본 연구에서는 시각자극에 대한 뇌의 집중, 비집중 상태의 차이특성을 비선형 분석하였다. 적은 샘플 데이터와 시간에 따른 변화특성을 해석하기 위하여 반복 정량 분석 법을 사용하였으며, 자극에 동기된 유발 전위의 반복궤적, 색상 반복 궤적을 도식화하였으며, 비선형 특징 파라미터들의 평균특징과 시변 특성을 추출하였다. 집중-비집중 도식과 파라미터 쌍은 위상공간 변환의 차원과 시간 지연을 결정하기 위한 정보를 제공하였으며, 집중 시의 뇌가 비집중 시의 뇌보다 복잡하다는 특징을 보였으며, 자극에 동기된 유발전위는 평균적 의미에서 동일 반응을 보이나 국부적으로는 환경과 상태에 따라 변화하였다. 본 실험을 통하여 시각자극에 대한 집중과 비집중 시 뇌의 비선형 현상을 해석하기 위한 가능성을 확인하였다.

Keywords

References

  1. Stam, Cornelis J. "Nonlinear dynamical analysis of EEG and MEG: review of an emerging field." Clinical Neurophysiology, Vol.116, No.10, pp.2226-2301, 2005.
  2. Webber Jr, Charles L., and Joseph P. Zbilut. "Recurrence quantification analysis of nonlinear dynamical systems." Tutorials in contemporary nonlinear methods for the behavioral sciences pp.26-94, 2005.
  3. Takens, Floris. "Detecting strange attractors in turbulence." Dynamical systems and turbulence, Warwick 1980. (pp.366-381). Springer Berlin Heidelberg, 1981.
  4. Eckmann, Jean-Pierre, S. Oliffson Kamphorst, and David Ruelle. "Recurrence plots of dynamical systems." Europhys. Lett Vol.4, No.9, pp.973-977, 1987. https://doi.org/10.1209/0295-5075/4/9/004
  5. Zbilut, Joseph P., and Charles L. Webber. "Embeddings and delays as derived from quantification of recurrence plots." Physics letters A Vol.171, No.3, pp.199-203, 1992. https://doi.org/10.1016/0375-9601(92)90426-M
  6. Marwan, Norbert, Andreas Groth, and Jurgen Kurths. Quantification of order patterns recurrence plots of event related potentials. Zentrum fur Technomathematik, 2005.
  7. Faure, Philippe, and Henri Korn. "Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation." Comptes Rendus de l'Academie des Sciences-Series III-Sciences de la Vie Vol.324, No.9, pp.773-793, 2001. https://doi.org/10.1016/S0764-4469(01)01377-4
  8. S. Carrubba, C. Frilot, A. Chesson, A.A. Marino, "Detection of nonlinear event-related potentials," Journal of neuroscience methods, Vol.157, no.1, pp.39-47, 2006. https://doi.org/10.1016/j.jneumeth.2006.03.022
  9. Gautama, Temujin, Danilo P. Mandic, and Marc M. Van Hulle. "Indications of nonlinear structures in brain electrical activity." Physical Review E Vol.67, No.4, 2003.
  10. Pritchard, Walter S., and Dennis W. Duke. "Measuring chaos in the brain-a tutorial review of EEG dimension estimation." Brain and Cognition, Vol.27, No.3, pp.353-397, 1995. https://doi.org/10.1006/brcg.1995.1027