DOI QR코드

DOI QR Code

Synthesis of Poly-Substituted Benzene Derivatives via [3+3] Annulation Protocol from Morita-Baylis-Hillman Adducts and Glutaconates

  • Lim, Jin Woo (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Se Hee (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Yu, Jin (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Jae Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2013.08.14
  • Accepted : 2013.08.30
  • Published : 2013.11.20

Abstract

Keywords

Experimental Section

The starting materials MBH bromides were prepared according to the reported method from MBH adducts with aqueous HBr or PBr3.11 Glutaconate derivatives 2a (E) and 2b (E) were prepared by esterification of commercial trans-glutaconic acid. Triethyl aconitate (2c, E) was prepared by esterification of commercial trans-aconitic acid.12

Typical Synthetic Procedure of 3a. A stirred solution of 1a (239 mg, 1.0 mmol), 2a (205 mg, 1.1 mmol), Cs2CO3 (489 mg, 1.5 mmol) in DMF (3.0 mL) was heated to 90 ℃ for 1 h. After the usual aqueous extractive workup and column chromatographic purification process (hexane/ether, 10:1), compound 3a2a was obtained as colorless oil, 235 mg (72%). Other compounds were synthesized similarly, and the spectroscopic data of 3b-i and 4a are as follows.

Compound 3b: 70%; white solid, mp 52-54 ℃; IR (KBr) 1719, 1434, 1322, 1233 cm−1; 1H NMR (CDCl3, 300 MHz) δ 2.39 (s, 3H), 3.82 (s, 3H), 3.83 (s, 3H), 4.02 (s, 2H), 6.98- 7.02 (m, 2H), 7.08-7.23 (m, 3H), 7.90 (d, J = 1.8 Hz, 1H), 8.28 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz) δ 16.98, 39.78, 52.16, 52.18, 126.27, 127.43, 128.41, 128.54, 129.62, 131.87, 134.11, 139.14, 140.77, 143.37, 166.37, 168.09; ESIMS m/z 299 [M+H]+. Anal. Calcd for C18H18O4: C, 72.47; H, 6.08. Found: C, 72.69; H, 6.31.

Compound 3c: 76%; colorless oil, IR (film) 1720, 1318, 1228 cm−1; 1H NMR (CDCl3, 300 MHz) δ 1.25 (t, J = 7.2 Hz, 3H), 1.34 (t, J = 7.2 Hz, 3H), 2.41 (s, 3H), 4.24 (q, J = 7.2 Hz, 2H), 4.32 (q, J = 7.2 Hz, 2H), 4.42 (s, 2H) 6.77 (d, J = 6.6 Hz, 1H), 7.25 (t, J = 7.8 Hz, 1H), 7.38-7.50 (m, 2H), 7.67 (d, J = 8.4 Hz, 1H), 7.76-7.86 (m, 1H), 7.79 (d, J = 1.8 Hz, 1H), 7.90-7.96 (m, 1H), 8.29 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz) δ 14.21, 14.28, 16.89, 36.42, 61.04, 61.27, 123.23, 125.53, 125.72, 125.79, 126.19, 127.19, 128.00, 128.82, 129.43, 131.81, 132.32, 133.72, 133.97, 134.96, 140.11, 143.02, 165.92, 167.96; ESIMS m/z 377 [M+H]+. Anal. Calcd for C24H24O4: C, 76.57; H, 6.43. Found: C, 76.45; H, 6.68.

Compound 3d: 71%; colorless oil, IR (film) 1720, 1368, 1228 cm−1; 1H NMR (CDCl3, 300 MHz) δ 1.39 (t, J = 7.2 Hz, 3H), 1.41 (t, J = 7.2 Hz, 3H), 2.48 (s, 3H), 4.26 (s, 2H), 4.37 (q, J = 7.2 Hz, 2H), 4.38 (q, J = 7.2 Hz, 2H), 7.26 (dd, J = 8.4 and 1.8 Hz, 1H), 7.38-7.47 (m, 3H), 7.68-7.73 (m, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.76-7.81 (m, 1H), 8.04 (d, J = 1.8 Hz, 1H), 8.36 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz) δ 14.26, 14.30, 17.04, 40.01, 61.13, 61.23, 125.48, 126.07, 126.63, 126.95, 127.52, 127.57, 127.91, 128.19, 129.48, 132.09, 132.53, 133.49, 134.08, 136.80, 140.41, 143.02, 165.99, 167.91; ESIMS m/z 377 [M+H]+.

Compound 3e: 66%; colorless oil, IR (film) 1720, 1316, 1228 cm−1; 1H NMR (CDCl3, 300 MHz) δ 1.33 (t, J = 7.2 Hz, 3H), 1.34 (t, J = 7.2 Hz, 3H), 2.49 (s, 3H), 3.50-3.63 (m, 2H), 4.31 (q, J = 7.2 Hz, 2H), 4.32 (q, J = 7.2 Hz, 2H), 6.21 (dd, J = 15.9 and 4.2 Hz, 1H), 6.28 (dd, J = 15.9 and 2.4 Hz, 1H), 7.09-7.27 (m, 5H), 7.92 (d, J = 1.8 Hz, 1H), 8.24 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz) δ 14.28, 14.32, 16.75, 37.20, 61.12, 61.23, 126.10, 127.27, 127.32, 127.91, 128.49, 129.27, 131.53, 132.30, 133.26, 137.11, 140.09, 142.54, 166.01, 167.95; ESIMS m/z 353 [M+H]+. Anal. Calcd for C22H24O4: C, 74.98; H, 6.86. Found: C, 75.12; H, 6.93.

Compound 3f: 69%; colorless oil, IR (film) 1721, 1303, 1229, 1177 cm−1; 1H NMR (CDCl3, 300 MHz) δ 1.39 (t, J = 7.2 Hz, 3H), 1.41 (t, J = 7.2 Hz, 3H), 2.53 (s, 3H), 4.06 (s, 2H), 4.37 (q, J = 7.2 Hz, 2H), 4.38 (q, J = 7.2 Hz, 2H), 5.89 (dd, J = 3.3 and 0.9 Hz, 1H), 6.27 (dd, J = 3.3 and 1.8 Hz, 1H), 7.32 (dd, J = 1.8 and 0.9 Hz, 1H), 7.97 (d, J = 1.8 Hz, 1H), 8.33 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz) δ 14.25, 14.27, 16.69, 32.70, 61.11, 61.23, 106.56, 110.30, 127.91, 129.64, 132.34, 133.58, 138.16, 141.58, 142.68, 152.90, 165.84, 167.79; ESIMS m/z 317 [M+H]+.

Compound 3g: 53%; colorless oil, IR (film) 2957, 2930, 1722, 1315, 1226 cm−1; 1H NMR (CDCl3, 300 MHz) δ 0.90 (t, J = 7.2 Hz, 3H), 1.25-1.38 (m, 6H), 1.40 (t, J = 7.2 Hz, 3H), 1.41 (t, J = 7.2 Hz, 3H), 1.54-1.65 (m, 2H), 2.53 (s, 3H), 2.69 (t, J = 7.8 Hz, 2H), 4.38 (q, J = 7.2 Hz, 2x2H), 7.92 (d, J = 1.8 Hz, 1H), 8.24 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz) δ 14.04, 14.27, 14.32, 16.50, 22.57, 29.25, 30.20, 31.63, 33.79, 61.02, 61.13, 127.56, 128.55, 132.08, 132.73, 141.85, 142.90, 166.18, 168.15; ESIMS m/z 321 [M+H]+. Anal. Calcd for C19H28O4: C, 71.22; H, 8.81. Found: C, 71.47; H, 8.79.

Compound 3h: 69%; colorless oil, IR (film) 1721, 1317, 1228 cm−1; 1H NMR (CDCl3, 300 MHz) δ 1.04 (t, J = 7.5 Hz, 3H), 1.31 (t, J = 7.2 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H), 2.86 (q, J = 7.5 Hz, 2H), 4.06 (s, 2H), 4.29 (q, J = 7.2 Hz, 2H), 4.31 (q, J = 7.2 Hz, 2H), 6.97-7.04 (m, 2H), 7.08-7.23 (m, 3H), 7.88 (d, J = 1.8 Hz, 1H), 8.23 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz) δ 14.24, 14.30, 15.01, 23.37, 38.77, 61.09, 61.24, 126.28, 127.98, 128.47, 128.52, 129.67, 132.10, 134.57, 139.90, 139.91, 148.50, 165.95, 167.91; ESIMS m/z 341 [M+H]+.

Compound 3i: 48%; pale yellow oil, IR (film) 1722, 1368, 1245 cm−1; 1H NMR (CDCl3, 300 MHz) δ 0.92, (t, J = 7.2 Hz, 3H), 1.41 (t, J = 7.2 Hz, 3H), 3.82 (s, 2H), 3.99 (q, J = 7.2 Hz, 2H), 4.40 (q, J = 7.2 Hz, 2H), 6.75 (d, J = 8.4 Hz, 2H), 7.00-7.07 (m, 2H), 7.13 (d, J = 8.4 Hz, 2H), 7.29-7.36 (m, 3H), 8.04 (d, J = 1.8 Hz, 1H), 8.35 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz) δ 13.59, 14.31, 38.60, 61.08, 61.35, 127.48, 127.91, 128.34, 128.57, 128.65, 129.75, 129.95, 131.86, 133.32, 133.60, 138.54, 138.63, 140.04, 145.83, 165.66, 167.74; ESIMS m/z 423 [M+H]+, 425 [M+H+2]+. Anal. Calcd for C25H23ClO4: C, 71.00; H, 5.48. Found: C, 71.13; H, 5.71.

Compound 4a: 42%; colorless oil, IR (film) 1721, 1310, 1233, 1176 cm−1; 1H NMR (CDCl3, 300 MHz) δ 0.92 (t, J = 7.2 Hz, 3H), 1.41 (t, J = 7.2 Hz, 3H), 2.04 (s, 3H), 2.54 (s, 3H), 3.96 (q, J = 7.2 Hz, 2H), 4.39 (q, J = 7.2 Hz, 2H), 7.09- 7.15 (m, 2H), 7.31-7.43 (m, 3H), 8.09 (s, 1H); 13C NMR (CDCl3, 75 MHz) δ 13.59, 14.29, 17.64, 17.67, 60.75, 61.15, 127.01, 127.89, 128.15, 128.59, 129.54, 130.63, 137.38, 140.56, 141.13, 144.33, 167.96, 168.02; ESIMS m/z 327 [M+H]+. Anal. Calcd for C20H22O4: C, 73.60; H, 6.79. Found: C, 73.75; H, 6.92.

References

  1. Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. https://doi.org/10.1021/cr010043d
  2. Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447-5674. https://doi.org/10.1021/cr900291g
  3. Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511-4574. https://doi.org/10.1016/j.tet.2008.02.087
  4. Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1-48. https://doi.org/10.1021/cr068057c
  5. Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.; John Wiley & Sons: New York, 1997; Vol. 51, pp 201-350.
  6. Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627-645. https://doi.org/10.2174/1385272023374094
  7. Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490. https://doi.org/10.5012/bkcs.2005.26.10.1481
  8. Gowrisankar, S.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Kim, J. N. Tetrahedron 2009, 65, 8769-8780. https://doi.org/10.1016/j.tet.2009.07.034
  9. Shi, M.; Wang, F.-J.; Zhao, M.-X.; Wei, Y. The Chemistry of the Morita-Baylis-Hillman Reaction; RSC Publishing: Cambridge, UK, 2011.
  10. Kim, S. C.; Lee, K. Y.; Lee, H. S.; Kim, J. N. Tetrahedron 2008, 64, 103-109. https://doi.org/10.1016/j.tet.2007.10.068
  11. Park, D. Y.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2007, 48, 1633-1636. https://doi.org/10.1016/j.tetlet.2006.12.146
  12. Lim, C. H.; Kim, S. H.; Park, K. H.; Lee, J.; Kim, J. N. Tetrahedron Lett. 2013, 54, 387-391. https://doi.org/10.1016/j.tetlet.2012.11.020
  13. Lim, C. H.; Kim, S. H.; Kim, K. H.; Kim, J. N. Tetrahedron Lett. 2013, 54, 2476-2479 https://doi.org/10.1016/j.tetlet.2013.02.104
  14. Park, D. Y.; Kim, S. J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2006, 47, 6315-6319. https://doi.org/10.1016/j.tetlet.2006.06.147
  15. Kim, S. C.; Lee, H. S.; Lee, Y. J.; Kim, J. N. Tetrahedron Lett. 2006, 47, 5681-5685. https://doi.org/10.1016/j.tetlet.2006.06.031
  16. Kim, S. J.; Kim, S. H.; Kim, K. H.; Kim, J. N. Bull. Korean Chem. Soc. 2008, 29, 876-878. https://doi.org/10.5012/bkcs.2008.29.4.876
  17. Lee, M. J.; Park, D. Y.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2006, 47, 1833-1837. https://doi.org/10.1016/j.tetlet.2005.12.134
  18. Diallo, A.; Zhao, Y.-L.; Wang, H.; Li, S.-S.; Ren, C.-Q.; Liu, Q. Org. Lett. 2012, 14, 5776-5779. https://doi.org/10.1021/ol302829f
  19. Rieck, J. A.; Grunwell, J. R. J. Org. Chem. 1980, 45, 3512-3513. https://doi.org/10.1021/jo01305a029
  20. Jackson, D. A.; Lacy, P. H.; Smith, D. C. C. J. Chem. Soc., Perkin Trans 1 1989, 215-220.
  21. Nandaluru, P. R.; Bodwell, G. J. Org. Lett. 2012, 14, 310-313. https://doi.org/10.1021/ol2030636
  22. Nandaluru, P. R.; Dongare, P.; Kraml, C. M.; Pascal, R. A., Jr.; Dawe, L. N.; Thompson, D. W.; Bodwell, G. J. Chem. Commun. 2012, 48, 7747-7749. https://doi.org/10.1039/c2cc33611a
  23. Schwerdtfeger, A. E.; Chan, T. H. J. Org. Chem. 1993, 58, 6513-6516. https://doi.org/10.1021/jo00075a065
  24. Yamazaki, S.; Ohmitsu, K.; Ohi, K.; Otsubo, T.; Moriyama, K. Org. Lett. 2005, 7, 759-762. https://doi.org/10.1021/ol047693z
  25. Morikawa, S.; Yamazaki, S.; Furusaki, Y.; Amano, N.; Zenke, K.; Katiuchi, K. J. Org. Chem. 2006, 71, 3540-3544. https://doi.org/10.1021/jo0602118
  26. Jia, Y.; Tomita, T.; Yamauchi, K.; Nishiyama, M.; Palmer, D. R. J. Biochem. J. 2006, 396, 479-485. https://doi.org/10.1042/BJ20051711
  27. Mulzer, J.; Pointner, A.; Chucholowski, A.; Bruntrup, G. J. Chem. Soc., Chem. Commun. 1979, 52-54.
  28. Shindo, M.; Matsumoto, K.; Shishido, K. Chem. Commun. 2005, 2477-2479.
  29. Chung, Y. M.; Gong, J. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2001, 42, 9023-9026. https://doi.org/10.1016/S0040-4039(01)01971-2
  30. Kim, J. N.; Lee, H. J.; Lee, K. Y.; Gong, J. H. Synlett 2002, 173-175.
  31. Gong, J. H.; Kim, H. R.; Ryu, E. K.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 789-790. https://doi.org/10.5012/bkcs.2002.23.6.789
  32. Baidya, M.; Remennikov, G. Y.; Mayer, P.; Mayr, H. Chem. Eur. J. 2010, 16, 1365-1371. https://doi.org/10.1002/chem.200902487
  33. Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. Angew. Chem. Int. Ed. 2009, 48, 5737-5740. https://doi.org/10.1002/anie.200902093
  34. Das, B.; Damodar, K.; Bhunia, N.; Shashikanth, B. Tetrahedron Lett. 2009, 50, 2072-2074. https://doi.org/10.1016/j.tetlet.2009.02.132
  35. Basavaiah, D.; Reddy, K. R.; Kumaragurubaran, N. Nat. Protoc. 2007, 2, 2665-2676. https://doi.org/10.1038/nprot.2007.369
  36. Das, B.; Banerjee, J.; Ravindranath, N. Tetrahedron 2004, 60, 8357-8361. https://doi.org/10.1016/j.tet.2004.07.022
  37. Gowrisankar, S.; Kim, S. H.; Kim, J. N. Bull. Korean Chem. Soc. 2009, 30, 726-728. https://doi.org/10.5012/bkcs.2009.30.3.726
  38. Ferreira, M.; Fernandes, L.; Sa, M. M. J. Braz. Chem. Soc. 2009, 20, 564-68. https://doi.org/10.1590/S0103-50532009000300023
  39. Fernandes, L.; Bortoluzzi, A. J.; Sa, M. M. Tetrahedron 2004, 60, 9983-9989. https://doi.org/10.1016/j.tet.2004.08.018
  40. Basavaiah, D.; Hyma, R. S.; Padmaja, K.; Krishnamacharyulu, M. Tetrahedron 1999, 55, 6971-6976. https://doi.org/10.1016/S0040-4020(99)00326-9
  41. Yadav, J. S.; Reddy, B. V. S.; Madan, C. New J. Chem. 2001, 25, 1114-1117. https://doi.org/10.1039/b103850h
  42. Kvita, V. Helv. Chim. Acta 1990, 73, 411-416. https://doi.org/10.1002/hlca.19900730220

Cited by

  1. Regioselective Synthesis of Substituted Arenes via Aerobic Oxidative [3 + 3] Benzannulation Reactions of α,β-Unsaturated Aldehydes and Ketones vol.17, pp.6, 2015, https://doi.org/10.1021/acs.orglett.5b00318
  2. Synthesis of 1,3,4-Trisubstituted Benzenes from Morita-Baylis-Hillman Adducts of α-Bromocinnamaldehyde via [5+1] Annulation Strategy vol.36, pp.12, 2015, https://doi.org/10.1002/bkcs.10577
  3. Synthesis of Tetrahydropyridines from Morita-Baylis-Hillman Acetates of α,β-Unsaturated Aldehydes Via an Intramolecular 1,6-Conjugate Addition vol.37, pp.1, 2015, https://doi.org/10.1002/bkcs.10610
  4. ), Ring-Expansion by Palladium Rearrangement, and Aromatization vol.37, pp.2, 2016, https://doi.org/10.1002/bkcs.10636
  5. Recent Progress in Transition-Metal-Free, Base-Mediated Benzannulation Reactions for the Synthesis of a Diverse Range of Aromatic and Heteroaromatic Compounds vol.7, pp.6, 2018, https://doi.org/10.1002/ajoc.201800080