Experimental
Preparation of TiO2 Particles.29 Two solutions were prepared: 0.45 wt %of titanium butoxide in ethylene glycol and 2.03 mM of surfactant (Tween 20) in acetone containing a small amount of water. The titanium butoxide solution was mixed with the Tween 20 solution. After stirring for 1 day at room temperature, solution was centrifuged for 10 min at 3000 rpm.
Preparation of TiO2@SiO2 Particles.29 TiO2 particles (0.082 g) were dried for 2 h at 323 K. The particles were dispersed in 100 mL of ethanol under the sonication and then 5 mL of aqueous ammonia solution was added to the dispersion. Tetraethyl orthosilicate (TEOS) (2 mL) was added to the dispersion. After stirring for 10-40 min at room temperature, the solvent was removed by centrifugation at 3000 rpm for 5 min. The resulting powder was calcinated at 873-1273 K for 15 minutes.
Preparation of Acryl Functionalized TiO2@SiO2 Particles. TiO2@SiO2 particles were dispersed in a solution of 1.5 mL of ethanol, 1.7 mL of water and 1.25 mL of aqueous ammonia solution under sonication for 10 min. 3-(Trimethoxysilyl)- propyl acrylate (0.1 mL) was added to the solution. The solution was stirred for 1 day and the particles were collected by centrifugation at 3000 rpm for 10 min. The resulting particles were washed with ethanol and dried in vacuum.
References
- Pekarek, K. J.; Jacob, J. S.; Mathiowitz, E. Nature 1994, 367, 258. https://doi.org/10.1038/367258a0
- Lou, X. W.; Archer, L. A.; Yang, Z. Adv. Mater 2008, 20, 3987. https://doi.org/10.1002/adma.200800854
- Huang, C.; Huang, W.; Yeh, C. Biomaterials 2011, 32, 556. https://doi.org/10.1016/j.biomaterials.2010.08.114
- Lu, Y.; Fan, H.; Stump, A.; Ward, T. L.; Rieker, T.; Brinker, C. J. Nature 1999, 398, 223. https://doi.org/10.1038/18410
- Schacht, S.; Huo, Q.; Voigt-Martin, I. G.; Stucky, G. D.; Schuth, F. Science 1996, 273, 768. https://doi.org/10.1126/science.273.5276.768
- Discher, B. M.; Won, Y. Y. D. S.; Ege, J.; Lee, C. M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143. https://doi.org/10.1126/science.284.5417.1143
- Caruso, F.; Caruso, R. A.; Mohwald, H. Science 1998, 282, 1111. https://doi.org/10.1126/science.282.5391.1111
- Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Adv. Mater. 2000, 12, 206. https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<206::AID-ADMA206>3.0.CO;2-5
- Wu, D.; Ge, X.; Zhang, Z.; Wang, M.; Zhang, S. Langmuir 2004, 20, 5192. https://doi.org/10.1021/la049405d
- Joo, J. B.; Zhang, Q.; Lee, I.; Dahl, M.; Zaera, F.; Yin, Y. Adv. Funct. Mater. 2012, 22, 166. https://doi.org/10.1002/adfm.201101927
- Zhang, T.; Ge, J.; Hu, Y.; Zhang, Q.; Aloni, S.; Yin, Y. Angew. Chem. Int. Ed. 2008, 47, 5806. https://doi.org/10.1002/anie.200800927
- Chaudhuri, R. G.; Paria, S. Chem. Rev. 2012, 112, 2373. https://doi.org/10.1021/cr100449n
- Wu, X.; Xu, D. Adv. Mater. 2010, 22, 1516. https://doi.org/10.1002/adma.200903879
- Wu, X.; Xu, D. J. Am. Chem. Soc. 2009, 131, 2774. https://doi.org/10.1021/ja808452r
- Wong, Y. J.; Zhu, L.; Teo, W. S.; Tan, Y. W.; Yang, Y.; Wang, C.; Chen, H. J. Am. Chem. Soc. 2011, 133, 11422. https://doi.org/10.1021/ja203316q
- Li, L.; Tang, F.; Liu, H.; Liu, T.; Hao, N.; Chen, D.; Teng, X.; He, J. ACS. Nano. 2010, 4, 6874. https://doi.org/10.1021/nn100918a
- Lee, J.; Park, J. C.; Song, H. Adv. Mater. 2008, 20, 1523. https://doi.org/10.1002/adma.200702338
- Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q. Angew. Che. Int. Ed. 2010, 49, 4981. https://doi.org/10.1002/anie.201001252
- Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X.; Lu, G. Q. Chem. Commun. 2011, 47, 12578. https://doi.org/10.1039/c1cc13658e
- Ikeda, S.; Ikoma, Y.; Kobayashi, H.; Harada, T.; Torimoto, T.; Ohtani, B.; Matsumura, M. Chem. Commun. 2007, 36, 3753.
- Liu, J.; Xu, J.; Che, R.; Chen, H.; Liu, M.; Liu, Z. Chem. Eur. J. 2013, 19, 6746. https://doi.org/10.1002/chem.201203557
- Fang, Q.; Xuan, S.; Jiang, W.; Gong, X. Adv. Funct. Mater. 2011, 21, 1902. https://doi.org/10.1002/adfm.201002191
- Wang, Y.; Wang, F.; Chen, B.; Xu, H.; Shi, D. Chem. Commun. 2011, 47, 10350. https://doi.org/10.1039/c1cc13463a
- Williams, D. D. B.; Carter, C. B. Transmission Electron Microscopy; Springer: 1996.
- Murashkevich, A. N.; Lavitskaya, A. S.; Barannikova, T. L.; Zharskii, I. M. J. Appl. Spectrosc. 2008, 75, 730. https://doi.org/10.1007/s10812-008-9097-3
- Lee, C. G.; Ahn, A.; Lee, S. J.; Lee, J.; Choi, M. Y.; Jung, J. H. J. Nanosci. Nanotecnol. 2011, 11, 3696. https://doi.org/10.1166/jnn.2011.3605
- Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735. https://doi.org/10.1021/cr00035a013
- Demirors, A. F.; Blaaderen, A. V.; Imhof, A. Chem. Mater. 2009, 21, 979. https://doi.org/10.1021/cm803250w
- Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62. https://doi.org/10.1016/0021-9797(68)90272-5
Cited by
- Rattle-Type Colloidal Crystals Composed of Spherical Hollow Particles Containing an Anisotropic, Movable Core vol.31, pp.19, 2015, https://doi.org/10.1021/acs.langmuir.5b01148
- Core–shell nanoparticles by silica coating of metal oxides in a dual-stage hydrothermal flow reactor vol.52, pp.16, 2016, https://doi.org/10.1039/C5CC09743F
- core-shell nanowires by a simple heat treatment vol.5, pp.8, 2017, https://doi.org/10.1063/1.4996211