DOI QR코드

DOI QR Code

Enthalpy - based homogenization procedure for composite piezoelectric modules with integrated electrodes

  • Received : 2013.02.15
  • Accepted : 2013.08.10
  • Published : 2013.11.25

Abstract

A new enthalpy - based procedure for the homogenization of the electromechanical material parameters of composite piezoelectric modules with integrated electrodes is presented. It is based on a finite element (FE) modeling of the latter's representative volume element (RVE). In contrast to most previously published homogenization approaches that are based on averaged quantities, the presented method uses a direct evaluation of the electromechanical enthalpy. Hence, for the linear orthotropic piezoelectric composite behavior full set of elastic, piezoelectric, and dielectric material parameters, 17 load cases (LC) are used where each load case leads directly to one material parameter. This gives the possibility to elaborate a very strict and easy to program processing. In conjunction with the 17 LC, the enthalpy - based homogenization is particularly suitable for laminated composite piezoelectric modules with integrated electrodes. In this case, the electric load has to be given at the electrodes rather than at the RVE FE model boundaries. The proposed procedure is validated through its comparison to literature available results on a classical 1-3 piezoelectric micro fiber (longitudinally polarized) reinforced composite and a $d_{15}$ shear piezoelectric macro-fiber (transversely polarized) composite module.

Keywords

References

  1. Benjeddou, A. and Al-Ajmi, M. (2011), "Analytical homogenizations of piezoceramic d15 shear macro-fibre composites" (Eds. Kuna, M. and Ricoeur, A.) , IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials 2009, volume 24 of IUTAM Book series, Springer, Netherlands.
  2. Berger, H., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Bravo-Castillero, J., Guinovart-Diaz, R., Sabina, F.J. and Maugin, G.A. (2006), "Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties" Smart Mater. Struct., 15(2), 451-458. https://doi.org/10.1088/0964-1726/15/2/026
  3. Biscani, F., Nasser, H., Belouettar, S. and Carrera, E. (2011), "Equivalent electro-elastic properties of Macro-Fiber Composite (MFC) transducers using asymptotic expansion approach" Compos. Part. B - Eng., 42(3), 444-455. https://doi.org/10.1016/j.compositesb.2010.12.009
  4. Deraemaeker, A. and Nasser, H. (2010), "Numerical evaluation of the equivalent properties of Macro Fiber Composite (MFC) transducers using periodic homogenization" Int. J. Solids Struct., 47(24), 3272-3285. https://doi.org/10.1016/j.ijsolstr.2010.08.006
  5. Deraemaeker, A., Nasser, H., Benjeddou, A. and Preumont, A. (2009) "Mixing rules for the piezoelectric properties of macro fiber composites" J. Intel. Mat. Syst. Str., 20, 1475-1481. https://doi.org/10.1177/1045389X09335615
  6. He, Q.C. (2004), "Variational and microstructure-independent relations for piezoelectric composites" J. Mater. Sci. Technol., 20, 69-72.
  7. Hori, M. and Nemat-Nasser, S. (1998), "Universal bounds for effective piezoelectric moduli" Mech. Mater., 30(1), 1-19. https://doi.org/10.1016/S0167-6636(98)00029-5
  8. Kranz, B., Benjeddou, A. and Drossel W.G. (2013) "Numerical and experimental characterizations of longitudinally polarized piezoelectric d15 shear macro-fiber composites" Acta Mech., DOI: 10.1007/s00707-013-0952-9.
  9. Malakooti M.H. and Sodano H.A. (2013) "Multi-inclusion modeling of multi-phase piezoelectric composites" Compos. Pt. B, 47, 181-189. https://doi.org/10.1016/j.compositesb.2012.10.034
  10. Paik S.H. Yoon T.H. Shin S.J. and Kim S.J. (2007) "Computational material characterization of active fiber composites" J. Intel. Mat. Syst. Str., 18, 19-28. https://doi.org/10.1177/1045389X06064347
  11. Pettermann, H. E. and Suresh, S. (2000), "A comprehensive unit cell model: a study of coupled effects in piezoelectric 1-3 composites" Int. J. Solids Struct., 37, 5447-5464. https://doi.org/10.1016/S0020-7683(99)00224-3
  12. Pindera, M.J., Khatam, H., Drago, A.S. and Bansal Y. (2009) "Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches" Compos. Part. B - Eng., 40(5), 349-378. https://doi.org/10.1016/j.compositesb.2009.03.007
  13. Shindo Y. Narita F. Sato K. and Takeda T. (2011) "Nonlinear electromechanical fields and localized polarization switching of piezoelectric macro-fiber composites" J. Mech. Mater. Struct., 6 (7-8), 1089-1102. https://doi.org/10.2140/jomms.2011.6.1089
  14. Trindade, M.A. and Benjeddou, A. (2011), "Finite element homogenization technique for the characterization of d15 shear piezoelectric macro-fibre composites" Smart Mater. Struct., 20(7), 075012. https://doi.org/10.1088/0964-1726/20/7/075012
  15. Trindade, M.A. and Benjeddou A. (2013) "Finite element characterization and parametric analysis of nonlinear behaviour of an actual d15 shear MFC" Acta Mech., DOI: 10.1007/s00707-013-0951-x.
  16. Xu, Y., Zhang, W., Bassir, D. (2010), "Stress analysis of multi-phase and multi-layer plain weave composite structure using global/local approach" Compos. Struct., 92(5), 1143-1154. https://doi.org/10.1016/j.compstruct.2009.09.053
  17. Zhang, W., Dai, G. Wang F. Sun S. and Bassir H. (2007) "Using strain energy - based prediction of effective elastic properties in topology optimization of material microstructures" Acta Mech. Sinca., 23(1), 77-89. https://doi.org/10.1007/s10409-006-0045-2

Cited by

  1. Numerical and experimental characterizations of longitudinally polarized piezoelectric d 15 shear macro-fiber composites vol.224, pp.11, 2013, https://doi.org/10.1007/s00707-013-0952-9