DOI QR코드

DOI QR Code

Biosorption of uranium by Bacillus sp.FB12 isolated from the vicinity of a power plant

  • Xu, Xiaoping (College of Chemistry and Chemical Engineering, Fuzhou University) ;
  • He, Shengbin (College of Chemistry and Chemical Engineering, Fuzhou University) ;
  • Wang, Zhenshou (College of Chemistry and Chemical Engineering, Fuzhou University) ;
  • Zhou, Yang (College of Chemistry and Chemical Engineering, Fuzhou University) ;
  • Lan, Jing (College of Chemistry and Chemical Engineering, Fuzhou University)
  • 투고 : 2013.06.06
  • 심사 : 2013.11.16
  • 발행 : 2013.09.25

초록

Biosorption represents a technological innovation as well as a cost effective excellent remediation technology for cleaning up radionuclides from aqueous environment. In the present study, a bacteria strain FB12 with high adsorption rate of uranium ion was isolated from the vicinity of the nuclear power plant. It was tentatively identified as Bacillus sp.FB12 according to the 16S rDNA sequencing. Efforts were made to further improve the adsorption rate and genetic stability by UV irradiation and UV-LiCl cooperative mutagenesis. The improved strain named Bacillus sp.UV32 obtains excellent genetic stability and a high adsorption rate of 95.9%. The adsorption of uranium U (VI) by Bacillus sp.UV32 from aqueous solution was examined as a function of metal ion concentration, cell concentration, adsorption time, pH, temperature, and the presence of some foreign ions. The adsorption process of U (VI) was found to follow the pseudo-second-order kinetic equation. The adsorption isotherm study indicated that it preferably followed the Langmuir adsorption isotherm. The thermodynamic parameters values calculated clearly indicated that the adsorption process was feasible, spontaneous and endothermic in nature. These properties show that Bacillus sp.UV32 has potential application in the removal of uranium (VI) from the radioactive wastewater.

키워드

참고문헌

  1. Abdelouas, A., Lu, Y., Lutze, W. and Nuttall, H E. (1998), "Reduction of U (VI) to U (IV) by indigenous bacteria in contaminated ground water", J. Contam. Hydrol., 35(1), 217-233. https://doi.org/10.1016/S0169-7722(98)00134-X
  2. Arica, M.Y., Bektas, S. and Denizli, A. (2003), "Uranium recovery by immobilized and dried powdered biomass: characterization and comparison", Int. J. Miner. Process., 2003, 68(1-4), 93-107. https://doi.org/10.1016/S0301-7516(02)00062-5
  3. Chen, B., Xu, X., Hou, Z., Li, Z. and Ruan, W. (2011), "Identification and Mutagenesis of a New Isolated Strain Bacillus sp.B26 for Producing (R)-$\alpha$-Hydroxyphenylacetic Acid", Chin. J. Chem. Eng., 19(4), 636-643. https://doi.org/10.1016/S1004-9541(11)60034-7
  4. Choudhary, S. and Sar, P. (2011), "Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste", J. Hazard. Mater., 186(1), 336-343. https://doi.org/10.1016/j.jhazmat.2010.11.004
  5. Dabbagh, R., Ghafourian, H., Baghvand, A., Nabi, G.R., Riahi, H. and Ahmadi Faghih, M.A. (2007), "Bioaccumulation and biosorption of stable strontium and 90 Sr by Oscillatoria homogenea cyanobacterium", J. Radioanal. Nucl. Chem., 272(1), 53-59. https://doi.org/10.1007/s10967-006-6785-4
  6. Das, N. (2012), "Remediation of Radionuclide Pollutants through Biosorption - an Overview", CLEAN-Soil, Air, Water, 40(1), 16-23. https://doi.org/10.1002/clen.201000522
  7. Dhami, P.S., Gopalakrishnan, V., Kannan, R., Ramanujam, A., Salvi, N. and Udupa, S. (1998), "Biosorption of radionuclides by Rhizopus arrhizus", Biotechnol. Lett., 20(3), 225-228. https://doi.org/10.1023/A:1005313532334
  8. Domingo, J.L. (2001), "Reproductive and developmental toxicity of natural and depleted uranium: A review", Reproductive Toxicol., 15(6), 603-609. https://doi.org/10.1016/S0890-6238(01)00181-2
  9. Drancourt, M., Bollet, C. and Carlioz, R. (2000), "16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates", J. Clin. Microbiol., 38(10), 3623-3630 .
  10. Eroglu, H., Yapici, S., Nuhoglu, C. and Varoglu, E. (2009), "Biosorption of Ga-67 radionuclides from aqueous solutions onto waste pomace of an olive oil factory", J. Hazard. Mater., 172(2/3), 729-738. https://doi.org/10.1016/j.jhazmat.2009.07.054
  11. Farooq, U., Kozinski, J.A., Khan, M.A. and Athar, M. (2010), "Biosorption of heavy metal ions using wheat based biosorbents - A review of the recent literature", Bioresour. Technol., 101(14), 5043-5053. https://doi.org/10.1016/j.biortech.2010.02.030
  12. Fourest, E., Canal, C. and Roux, J.C. (1994), "Improvement of heavy metal biosorption by mycelia dead biomass (Rhizorpus arrhizus, mucor miechei and pencillium chrysogenm):pH control and cationic activation", FEMS Microbiol. Rev., 14(4), 325-332. https://doi.org/10.1111/j.1574-6976.1994.tb00106.x
  13. Gavrilescu, M., Pavel, L.V. and Cretescu, I. (2009), "Characterization and remediation of soils contaminated with uranium", J. Hazard. Mater., 163(2), 475-510. https://doi.org/10.1016/j.jhazmat.2008.07.103
  14. Genc, O., Yalcinkaya, Y., Buyuktuncel, E., Denizli, A., Arica, M.Y. and Bektas, S. (2003), "Uranium recovery by immobilized and dried powdered biomass: characterization and comparison", Int. J. Miner. Process., 68(1), 93-107. https://doi.org/10.1016/S0301-7516(02)00062-5
  15. Gok, C., Gerstmann, U. and Aytas, S. (2013), "Biosorption of radiostrontium by alginate beads: application of isotherm models and thermodynamic studies", J. Radioanal. Nucl. Chem., 295(1), 777-788. https://doi.org/10.1007/s10967-012-1838-3
  16. Goyal, N., Jain, S.C. and Banerjee, U.C. (2003), "Comparative studies on the microbial adsorption of heavy metals", Adv. Environ. Res., 7(2), 311-319. https://doi.org/10.1016/S1093-0191(02)00004-7
  17. Kalin, M., Wheeler, W.N. and Meinrath, G. (2004), "The removal of uranium from mining waste water using algal/microbial biomass", J. Environ. Radioact., 78(2), 151-177. https://doi.org/10.1016/j.jenvrad.2004.05.002
  18. Kazy, S.K., D'Souza, S.F. and Sar, P. (2009), "Uranium and thorium sequestration by a Pseudomonas sp.: Mechanism and chemical characterization", J. Hazard. Mater., 163(1), 65-72. https://doi.org/10.1016/j.jhazmat.2008.06.076
  19. Kedari, C.S., Das, S.K. and Ghosh, S. (2001), "Biosorption of long lived radionuclides using immobilized cells of Saccharomyces cerevisiae", World J. Microbiol. Biotechnol., 17(8), 789-793. https://doi.org/10.1023/A:1013547307770
  20. Kryvoruchko, A.P. and Atamanenko, I.D. (2007), "The effect of dispersed materials on baromembrane treatment of uranium-containing waters", Desalination, 204(1), 307-315. https://doi.org/10.1016/j.desal.2006.02.036
  21. Langmuir, I. (1918), "The adsorption of gases on plane surfaces of glass, mica and platinum", J. Am. Chem. Soc., 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004
  22. Li, J. and Zhang, Y. (2012), "Remediation technology for the uranium contaminated environment: A review", Procedia Environmental Sciences, 13, 1609-1615 https://doi.org/10.1016/j.proenv.2012.01.153
  23. Li, Q., Liu, Y., Cao, X., Pang, C., Wang, Y., Zhang, Z. and Hua, M. (2012), "Biosorption characteristics of uranium (VI) from aqueous solution by pummelo peel", J. Radioanal. Nucl. Chem., 293(1), 67-73. https://doi.org/10.1007/s10967-012-1720-3
  24. Liu, N., Liao, J., Yang, Y., Luo, S., Luo, Q., An, Z. and Zhao, P. (2008), "Biosorption of $^{241}Am$ by Saccharomyces cerevisiae: Preliminary investigation on mechanism", J. Radioanal. Nucl. Chem, 275(1), 173-180. https://doi.org/10.1007/s10967-007-6996-3
  25. Mahmood, Q., Hu, B.L., Cai, J., Zheng, P. and Azim, M.R. (2009), "Isolation of Ochrobactrum sp. QZ2 from sulfide and nitrite treatment system", J. Hazar. Mater., 165(1-3), 558-565. https://doi.org/10.1016/j.jhazmat.2008.10.021
  26. Morrison, S.J., Spangler, R.R. and Tripathi, V.S. (1995) "Adsorption of uranium (VI) on amorphous ferric oxyhydroxide at high concentrations of dissolved carbon (IV) and surfur (VI)", J. Contam. Hydrol., 17(4), 333-346. https://doi.org/10.1016/0169-7722(94)00039-K
  27. Pollmann, K., Raff, J., Merroun, M., Fahmy, K. and Selenska-Pobell, S. (2006), "Metal binding by bacteria from uranium mining waste piles and its technological applications", Biotechnol. Adv., 24(1), 58-68. https://doi.org/10.1016/j.biotechadv.2005.06.002
  28. Sanke Gowda, H. and Shakunthala, R. (1978), "Naphthidines as redox indicators in titrations with vanadate", Anal. Chim. Acta, 97(2), 385-389. https://doi.org/10.1016/S0003-2670(01)93446-4
  29. Sar, P., Kazy, S.K. and Souza, S.F.D. (2004), "Radionuclide remediation using a bacterial biosorbent", Int. Biodeterior. Biodegrad., 54(4), 193-202. https://doi.org/10.1016/j.ibiod.2004.05.004
  30. Silva, J.R., De Melo Ferreira, A.C. and Da Costa, A.C.A. (2009), "Uranium biosorption under dynamic conditions: preliminary tests with Sargassum filipendula in real radioactive wastewater containing Ba, Cr, Fe, Mn, Pb, Ca and Mg", J. Radioanal. Nucl. Chem., 279(3), 909-914. https://doi.org/10.1007/s10967-008-7366-5
  31. Vijayaraghavan, K. and Yun, Y.S. (2008), "Bacterial biosorbents and biosorption", Biotechnol. Adv., 26(3), 266-291. https://doi.org/10.1016/j.biotechadv.2008.02.002
  32. Xie, J.Z., Chang, H.L. and Kilbane II, J.J. (1996), "Removal and recovery of metal ions from wastewater using biosorbents and chemically modified biosorbents", Bioresour. Technol., 57(2), 127-136. https://doi.org/10.1016/0960-8524(96)00059-4
  33. Yakup Arica, M., Bayramoglu, G., Yilmaz, M., Bektas, S. and Genc, O. (2004), "Biosorption of $Hg^{2+}$, $Cd^{2+}$, and $Zn^{2+}$ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii", J. Hazard. Mater, 109(1), 191-199. https://doi.org/10.1016/j.jhazmat.2004.03.017

피인용 문헌

  1. Immobilization of chlorine dioxide modified cells for uranium absorption vol.137, 2014, https://doi.org/10.1016/j.jenvrad.2014.06.016
  2. Application of Chlorine Dioxide in Cell Surface Modification to Enhance Its Mechanical Stability and Metal Ion Adsorption vol.4, pp.3, 2013, https://doi.org/10.1021/acsomega.9b00033