DOI QR코드

DOI QR Code

Petrochemical effluent treatment using natural coagulants and an aerobic biofilter

  • Bandala, Erick R. (Grupo de Investigacion en Energia y Ambiente, Universidad de las Americas) ;
  • Tiro, Juan Bernardo (Grupo de Investigacion en Energia y Ambiente, Universidad de las Americas) ;
  • Lujan, Mariana (Grupo de Investigacion en Energia y Ambiente, Universidad de las Americas) ;
  • Camargo, Francisco J. (Grupo de Investigacion en Energia y Ambiente, Universidad de las Americas) ;
  • Sanchez-Salas, Jose Luis (Grupo de Investigacion en Energia y Ambiente, Universidad de las Americas) ;
  • Reyna, Silvia (Grupo de Investigacion en Energia y Ambiente, Universidad de las Americas) ;
  • Moeller, Gabriela (Instituto Mexicano de Tecnologia del Agua) ;
  • Torres, Luis G. (Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional)
  • Received : 2013.03.14
  • Accepted : 2013.11.05
  • Published : 2013.09.25

Abstract

Coagulation-flocculation (CF) was tested coupled with an aerobic biofilter to reduce total petroleum hydrocarbon (TPHs) concentration and toxicity from petrochemical wastewater. The efficiency of the process was followed using turbidity and chemical oxygen demand (COD). The biofilter was packed with a basaltic waste (tezontle) and inoculated with a bacterial consortium. Toxicity test were carried out using Lactuca sativa var. capitata seeds. Best results for turbidity removal were obtained using alum. Considerable turbidity removal was obtained when using Opuntia spp. COD removal with alum was 25%, for Opuntia powder it was 36%. The application of the biofilter allowed the removal of 70% of the remaining TPHs after 30 days with a biodegradation rate (BDR) value 47 $mgL^{-1}d^{-1}$. COD removal was slightly higher with BDR value 63 $mgL^{-1}d^{-1}$. TPH kinetics allowed a degradation rate constant equal to $4.05{\times}10^{-2}d^{-1}$. COD removal showed similar trend with $k=4.23{\times}10^{-2}d^{-1}$. Toxicity reduction was also successfully achieved by the combined treatment process.

Keywords

References

  1. Aboulhassan, M.A., Souabi, S., Yaacobi, A. and Baudu, M. (2006), "Improvement of paint effluents coagulation using natural and synthetic coagulants aids", J. Hazard. Mater., 138(1), 40-45. https://doi.org/10.1016/j.jhazmat.2006.05.040
  2. Ahmad, A.L., Sumanthi, S. and Hameed, B.H. (2006), "Coagulation of residue oil and suspended solid in pal, oil mill effluents by chitosan, alum and PAC", Chem. Eng. J., 118(1-2), 99-105. https://doi.org/10.1016/j.cej.2006.02.001
  3. American Public Health Association (1992), Standard Methods for the Examination of Water and Wastewater, (18th Edition), Washington D.C., MD, USA.
  4. An, Y.J., Kampbell, D.H. and McGill, M.E. (2002), "Toxicity of methyl-tert-butyl ether to plants", Environ. Toxicol. Chem., 21(8), 1679-1682. https://doi.org/10.1002/etc.5620210820
  5. Annadurai, G., Ling, L.Y. and Lee, J.F. (2007), "Biodegradation of phenol by Pseudomonas pictorum on immobilized with chitin", African J. Biotechnol., 6(3), 296-303.
  6. Bagur, M.G., Estepa, C., Martin-Peinado, F. and Morales-Ruano, S. (2010), "Toxicity assessment using Lactuca sativa L. bioassay of the metal(oids)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site", J. Soils Sed., 11(2), 281-289.
  7. Bandala, E.R., Andres-Octaviano, J., Pastrana, P. and Torres, L.G. (2006), "Removal of aldrin, dieldrin, heptachlor and heptachlor epoxide using activated carbon and/or Pseudomonas fluorescens free cell cultures", J. Environ. Sci. Health B, 41(5), 553-569. https://doi.org/10.1080/03601230600701700
  8. Banks, M.K. and Schultz, K.E. (2005), "Comparison of plants for germination toxicity test in petroleum-contaminated soils", Water Air Soil Pollut., 167(1-4), 211-219. https://doi.org/10.1007/s11270-005-8553-4
  9. Ben-Hamed, S., Rezgul, R., Halleb, A., Ghram, A., Oveslati, R., Labat, M. and Maaroufi, A. (2010), "Efficiency of refinery sludge biodegradation using municipal wastewater and activated sludge and effect of hydrocarbon concentration on culturable bacteria community", Ann. Microbiol., 60(4), 747-755. https://doi.org/10.1007/s13213-010-0126-0
  10. Benefield, L.D. and Randall, C.W. (1980), "Biological process design for wastewater treatment", Prentice Hall, Englewood Cliffs, NJ, USA.
  11. Bolto, B. and Gregory, J. (2007), "Organic polyelectrolytes in water treatment", Water Res., 41(11), 2301-2324. https://doi.org/10.1016/j.watres.2007.03.012
  12. Chang, W., Whyte, L. and Ghoshal, S. (2011), "Comparison of the effects of variable site temperatures and constant incubation temperatures on the biodegradation of petroleum hydrocarbons in pilot scale experiments with field-aged contaminated soils from a cold region site", Chemosphere, 82(6), 872-878. https://doi.org/10.1016/j.chemosphere.2010.10.072
  13. Chamka, M., Trabelsi, Y., Mnif, S. and Sayadi, S. (2011), "Isolation and characterization of Klebsiella oxytoca strain degrading crude oil from a Tunisian off-shore oil field", J. Basic Microbiol., 51(6),580-589. https://doi.org/10.1002/jobm.201100073
  14. Chavan, A. and Mukherji, S. (2008), "Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio", J. Hazard. Mater., 154(1-3), 63-72. https://doi.org/10.1016/j.jhazmat.2007.09.106
  15. Das, K. and Mukherjee, A.K. (2007), "Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India", Biores. Technol., 98(7), 1339-1345. https://doi.org/10.1016/j.biortech.2006.05.032
  16. Di Carlo, I., Rotolo, S.G., Scaillet, B., Buccheri, V. and Pichavant, M. (2010), "Phase equilibrium constraints on pre-eruptive conditions of recent felsic explosive volcanism at Pantelleria Island, Italy", J. Petrol., 51(11), 2245-2276. https://doi.org/10.1093/petrology/egq055
  17. Eckenfelder, W.W. (1961), "Trickling filter design and performance", J. Sanit. Eng. Div. ASCE, 87(SA6), 87-94.
  18. El-Nass, M.H., Al-Muhtaseb, S.A. and Makholuf, S. (2009), "Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel", J. Hazard. Mater., 164(2-3), 720-725. https://doi.org/10.1016/j.jhazmat.2008.08.059
  19. Galil, N., Rebhun, M. and Brayer, Y. (1988), "Disturbances and inhibition in biological treatment of wastewater from an integrated refinery", Water Sci. Technol., 20(10), 21-29.
  20. Gargouri, B., Karray, F., Mhiri, N., Aloui, F. and Sayadi, S. (2011), "Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents", J. Hazard. Mater., 189(1-2), 427-434. https://doi.org/10.1016/j.jhazmat.2011.02.057
  21. Joshua, R. and Vasu, V. (2013), "Characteristics of stored rain water and its treatment technology using moringa seeds", Int. J. Life Sci. Biotech. Pharma. Res., 2(1), 155-174.
  22. Mijaylova-Nacheva, P. and Moeller-Chavez, G. (2010), "Wastewater treatment using a novel bioreactor with submerged packing bed of polyethylene tape", Water Sci. Technol., 61(2), 481-489. https://doi.org/10.2166/wst.2010.838
  23. Miller, A.M., Fugate, E., Craver, J.V.O., Smith, J.A. and Zimmerman, J.B. (2008), "Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment", Environ. Sci. Technol., 42(12), 4274-4279. https://doi.org/10.1021/es7025054
  24. Owsianiak, M., Chrzanowski, L., Szulc, A., Olszanowski, A., Olejnik, A.K. and Heipieper, H.J. (2009), "Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbons degraders: Effect of the type of blend and the addition of biosurfactants", Bioresource Technol., 100(3), 1497-1500. https://doi.org/10.1016/j.biortech.2008.08.028
  25. Peavy, H.S., Rowe, D.R. and Tchobanoglous, G. (1985), Environmental Engineering, McGraw-Hill, New York, USA.
  26. Pijanowska, A., Kaczorek, E., Chrzanowski, L. and Olzanowski, A. (2007), "Cell hydrophobicity of Pseudomonas spp. and Bacillus spp. bacteria and hydrocarbon biodegradation in the presence of Quillaya saponin", World J. Microb. Biot., 23(5), 677-682. https://doi.org/10.1007/s11274-006-9282-6
  27. Rebhun, M. and Galil, N. (1988), "Inhibition by hazardous compounds in an integrated refinery", J. Water Pollut. Con. Fed., 60(11), 1955-1959.
  28. Sarika, R., Kalogerakis, N. and Mantzavinos, D. (2006), "Treatment of olive mill effluents. Part II. Complete removal of solids by direct flocculation with poly-electrolytes", Environ. Int., 31(2), 297-304.
  29. Santacruz, G., Bandala, E.R. and Torres, L.G. (2005), "Chlorinated pesticides (2, 4-D and DDT) biodegradation at high concentrations using immobilized Pseudomonas fluorescens", J. Environ. Sci. Health B, 40(4), 571-583.
  30. Schmit, C.G., Jahan, K., Schmit, K.H., Debik, E. and Mahendraker, V. (2009), "Activated sludge and other aerobic suspended culture processes", Water Environ. Res., 67, 1127-1193.
  31. Tamari, S., Samaniego-Martinez, D., Bonola, I., Bandala, E.R. and Ordaz-Chaparro, V. (2005), "Particle density of volcanic scoria determined by water picnometry", ASTM Geotech. Test J., 28(4), 321-327.
  32. Torres, L.G., Belloc, C., Vaca, M., Iturbe, R. and Bandala, E.R. (2009), "Coagulation-flocculation process applied to wastewaters generated in hydrocarbon-contaminated soil washing: Interaction among coagulant and flocculant concentrations and pH value", J. Environ. Sci. Health A, 44(13), 1449-1456. https://doi.org/10.1080/10934520903217716
  33. Torres, L.G., Carpinteyro-Urban, S. and Corzo-Rios, L.J. (2013), "Use of Annonia diversifolia and A. muricata seeds as source of natural coagulant-flocculant aids for the treatment of wastewaters", Eur. J. Biotech. Biosci., 1(2), 16-22.
  34. Torres, L.G., Carpinteyro-Urban, S. and Vaca, M. (2012), "Use of Prosopis laevigata seed gum and Opuntia ficus-indica mucilage for the treatment of municipal wastewaters by coagulation-flocculation", Nat. Resour. J., 3, 35-41.
  35. Torres, L.G., Hernandez, M.A., Pica, Y., Albiter, V. and Bandala, E.R. (2010), "Degradation of di-, tri-, tetra-, and pentachlorophenol mixtures in an aerobic biofilter", African J. Biotechnol., 9(23), 3396-3403.
  36. Vargas-Tapia, P., Castellanos-Ramos, J.Z., Munoz-Ramos, J.J., Sanchez-Garcia, P., Tijerina-Chavez, L., Lopez-Romero, R.M., Martinez-Sanchez, C. and Ojodeagua-Arredondo, J.L. (2008), "Effect of particle size on some physical properties of tezontle (volcanic rock) from state of Guanajuato, Mexico", Agr. Tecnol. Mexico, 34(3), 323-331.
  37. Wang, Q., Zhang, S., Li, Y. and Klassen, W. (2011), "Potential approaches to improving biodegradation of hydrocarbons for bioremediation of crude oil pollution", J. Environ. Prot., 2, 47-55. https://doi.org/10.4236/jep.2011.21005
  38. Wu, Y., Cui, W., Eskina, N.M.A. and Goff, H.D. (2009), "An investigation of four commercial galactomanans on their emulsion and rheological properties", Food Res. Int., 42(8), 1141-1175. https://doi.org/10.1016/j.foodres.2009.05.015
  39. Zamudio-Perez, E., Bandala, E.R., Fernandez, L.C. and Torres, L.G. (2013), "Surfactant enhanced washing of soil contaminated with petroleum hydrocarbons and treatment of produced wastewater using a biofilter", J. Environ. Treat. Techn. [In Press]
  40. Zhang, B., Su, H., Gu, X., Huang, X. and Wang, H. (2013), "Effect of structure and charge of polysaccharide flocculants on their flocculation performance for bentonite suspensions", Colloid. Surface. A: Physicochem. Eng. Aspects, 436(5), 443-449. https://doi.org/10.1016/j.colsurfa.2013.07.017

Cited by

  1. Treatment of phenol in petrochemical wastewater considering turbidity factor by backlight cascade photocatalytic reactor vol.348, 2017, https://doi.org/10.1016/j.jphotochem.2017.08.034
  2. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes vol.91, 2016, https://doi.org/10.1016/j.pce.2015.10.018
  3. The hybrid system successfully to consisting of activated sludge and biofilter process from hospital wastewater: Ecotoxicological study vol.276, pp.None, 2013, https://doi.org/10.1016/j.jenvman.2020.111098
  4. A comprehensive review of the Fenton-based approaches focusing on landfill leachate treatment vol.10, pp.1, 2013, https://doi.org/10.12989/aer.2021.10.1.059