References
- Alonso, U., Missana, T., Geckeis, H., Garcia-Gutierrez, M., Turrero, M., Mori, R., Schafer, T., Patelli, A. and Rigato, V. (2006), "Role of inorganic colloids generated in a high-level deep geological repository in the migration of radionuclides: Open questions", J. Iberian Geol., 32(1), 79-94.
- Amir, A. and Lee, W. (2011), "Enhanced reductive dechlorination of tetrachloroethene by nano-sized zerovalent iron with vitamin B12", Chem. Eng. J., 170(2-3), 492-497. https://doi.org/10.1016/j.cej.2011.01.048
- Amir, A. and Lee, W. (2012), "Enhanced reductive dechlorination of tetrachloroethene during reduction of cobalamin (III) by nano-mackinawite", J. Hazard. Mater., 235-236, 359-366. https://doi.org/10.1016/j.jhazmat.2012.08.017
- Bae, S. and Lee, W. (2010), "Inhibition of nZVI reactivity by magnetite during the reductive degradation of 1,1,1-TCA in nZVI/magnetite suspension", Appl. Catal. B-Environ., 96(1-2), 10-17. https://doi.org/10.1016/j.apcatb.2010.01.028
- Bargar, J., Reitmeyer, R., Lenhart, J. and Davis, J. (2000), "Characterization of U(VI)-carbonato complexes on hematite: EXAFS and electrophoretic mobility measurements", Geochim. Cosmochim. Ac., 64(16), 2737-2749. https://doi.org/10.1016/S0016-7037(00)00398-7
- Barnett, M., Jardine, P. and Brooks, S. (2002), "U(VI) adsorption to heterogeneous subsurface media: Application of a surface complexation model", Environ. Sci. Technol., 36(5), 937-942. https://doi.org/10.1021/es010846i
- Charlet, L., Liger, E. and Gerasimo, P. (1998), "Decontamination of TCE- and U-rich waters by granular iron: Role of sorbed Fe(II)", J. Environ. Eng., 124(1), 25-30. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:1(25)
- Cho, C., Bae, S. and Lee, W. (2012), "Enhanced degradation of TNT and RDX by bio-reduced iron bearing soil minerals", Adv. Environ. Res., Int. J., 1(1), 1-14. https://doi.org/10.12989/aer.2012.1.1.001
- Choi, K. and Lee, W. (2012), "Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II)", J. Hazard. Mater., 211-212(15), 146-153. https://doi.org/10.1016/j.jhazmat.2011.10.056
- Descostes, M., Schlegel, M., Eglizaud, N., Descamps, F., Miserque, F. and Simoni, E. (2010), "Uptake of uranium and trace elements in pyrite (FeS2) suspensions", Geochim. Cosmochim. Ac., 74(5), 1551-1562. https://doi.org/10.1016/j.gca.2009.12.004
- Dickinson, M. and Scott, T. (2010), "The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent", J. Hazard. Mater., 178(1-3), 171-179. https://doi.org/10.1016/j.jhazmat.2010.01.060
- Elsner, M., Schwarzenbach, R. and Haderlein, S. (2004), "Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants", Environ. Sci. Technol., 38(3), 799-807. https://doi.org/10.1021/es0345569
- Fiedor, J.N., Bostick, W.D., Jarabek, R.J. and Farrell, J. (1998), "Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy", J. Environ. Sci. Technol., 32(10), 1466-1473. https://doi.org/10.1021/es970385u
- Grenthe, I., Fuger, J., Konings, R., Lemire, R., Muller, A., Nguyen-trung cregu, C., Wanner, H. and Forest, I. (2003), Chemical Thermodynamics of Uranium, OECD publication, Paris, France.
- Gu, B., Liang, L., Dickey, M., Yin, X. and Dai, S. (1998), "Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation", Environ. Sci. Technol., 39(12), 3366-3373.
- Han, D., Batchelor, B. and Abdel-Wahab, A. (2012), "Sorption of selenium(IV) and selenium(VI) onto synthetic pyrite (FeS2): Spectroscopic and microscopic analyses", J. Colloid. Interf. Sci., 368(1), 496-504. https://doi.org/10.1016/j.jcis.2011.10.065
- He, Y. and Traina, S. (2005), "Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation", Environ. Sci. Technol., 39(12), 4499-4504. https://doi.org/10.1021/es0483692
- Hua, B. and Deng, B. (2008), "Reductive immobilization of uranium(VI) by amorphous iron sulfide", Environ. Sci. Technol., 42(23), 8703-8708. https://doi.org/10.1021/es801225z
- Hyun, S., Davis, J., Sun, K., and Hayes, K. (2012), "Uranium(VI) reduction by iron(II) monosulfide mackinawite", Environ. Sci. Technol., 46(6), 3369-3376. https://doi.org/10.1021/es203786p
- Kanel, S., Manning, B., Charlet, L. and Choi, H. (2005), "Removal of arsenic(III) from groundwater by nanoscale zero-valent iron", Environ. Sci. Technol., 39(5), 1291-1298. https://doi.org/10.1021/es048991u
- Katsoyiannis, I., Althoff, H., Bartel, H. and Jekel, M. (2006), "The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides", Water Res., 40(19), 3646-3652. https://doi.org/10.1016/j.watres.2006.06.032
- Kim, E. and Batchelor, B. (2009), "Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite", Environ. Sci. Technol., 43(8), 2899-2904. https://doi.org/10.1021/es803114g
- Kirana, Y.P. and Yun, J. (2011), "Formation and stability of aluminosilicate colloids by coprecipitation", Master's Dissertation, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
- Li, Z. and Zhang, W. (2006), "Iron nanoparticles: The core-shell structure and unique properties for Ni(II) sequestration", Langmuir., 22(10), 4638-4642. https://doi.org/10.1021/la060057k
- Liger, E., Charlet L. and Van Cappellen, P. (1999), "Surface catalysis of uranium (VI) reduction by iron (II)", Geochim. Cosmochim. Acta., 63(19-20), 2939-2955. https://doi.org/10.1016/S0016-7037(99)00265-3
- Martin, J., Herzing, A., Yan, W., Li, X., Koel, B., Kiely, C. and Zhang, W. (2008), "Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles", Langmuir., 24(8), 4329-4334. https://doi.org/10.1021/la703689k
- Matta, R., Hanna, K., Kone, T. and Chiron, S. (2008), "Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH", Chem. Eng. J., 144(3), 453-458. https://doi.org/10.1016/j.cej.2008.07.013
- Missana, T., Garcia-Gutierrez, M. and Fernndez, V. (2003), "Uranium(VI) sorption on colloidal magnetite under anoxic environment: Experimental study and surface complexation modeling", Geochim. Cosmochim. Ac., 67(14), 2543-2550. https://doi.org/10.1016/S0016-7037(02)01350-9
- Missana, T., Maffiotte, C. and Garcia-Gutierrez, M. (2003), "Surface reaction kinetics between nanocrystalline magnetite and uranyl", J. Colloid Interf. Sci., 261(1), 154-160. https://doi.org/10.1016/S0021-9797(02)00227-8
- Moulin, C., Laszak, I., Moulin V. and Tondre, C. (1998), "Time-resolved laser induced fluorescence as a unique tool for low-level uranium speciation", Appl., Spectrosc., 52(4), 528-535. https://doi.org/10.1366/0003702981944076
- Noubactep, C., Meinrath, G., Dietrich, P. and Merkel, B. (2003), "Mitigating uranium in groundwater: Prospects and limitations", Environ. Sci. Technol., 37(18), 4304-4308. https://doi.org/10.1021/es034296v
- Noubactep, C., Schoner, A. and Meinrath, G. (2006), "Mechanism of uranium removal from the aqueous solution by elemental iron", J. Hazard. Mater., 32(2-3), 202-212.
- Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F, Merkulov, A., Clark, S.B., Tkachev, V.V. and Myasoedov, B.F. (2006), "Colloid transport of plutonium in the far-field of the Mayak production association, Russia", Science, 314(5799), 638-641. https://doi.org/10.1126/science.1131307
-
O'Loughlin, E.J., Kelly, S.D., Cook, R.E., Csencsits, R. and Kemner, K.M. (2003), "Reduction of uranium (VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of
$UO_{2}$ nanoparticles", Environ. Sci. Technol., 37(4), 721-727. https://doi.org/10.1021/es0208409 -
Riba,
$UO_{2}$ Scott, T.B., Ragnarsdottir, V. and Allen, G.C. (2008), "Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles", Geochim. Cosmochim. Ac., 72(16), 4047-4057. https://doi.org/10.1016/j.gca.2008.04.041 - Rovira, M., Aamrani, S., Duro, L., Gimenez, J., Pablo, J. and Bruno, J. (2007), "Interaction of uranium with in situ anoxically generated magnetite on steel", J. Hazard. Mater., 147(3), 726-731. https://doi.org/10.1016/j.jhazmat.2007.01.067
- Scott, T.B., Allen, G.C., Heard, P.J. and Randell, M.G. (2005), "Reduction of U(VI) to U(IV) on the surface of magnetite", Geochim. Cosmochim. Ac., 69(24), 5639-5646. https://doi.org/10.1016/j.gca.2005.07.003
- Sparks, D. (1995), Environmental Soil Chemistry, Academic Press, San Diego, NY, USA.
-
Srinivasan, R., Lin, R., Spicer, R.L. and Davis, B.H. (1996), "Structural features in the formation of the green rust intermediate and
$\gamma$ -FeOOH", Colloid. Surface. A., 113(1-2), 97-105. https://doi.org/10.1016/0927-7757(96)03594-7 - Stookey, L.L. (1970), "Ferrozine - A new spectrophotometric reagent for iron", Anal. Chem., 42(7), 779-781. https://doi.org/10.1021/ac60289a016
- Sun, Y., Li, X., Cao, J., Zhang, W. and Wang, H. (2006), "Characterization of zero-valent iron nanoparticles", Adv. Colloid. Interfac., 120(1-3), 47-56 https://doi.org/10.1016/j.cis.2006.03.001
- Ulrich, K., Rossberg, A., Foerstendorf, H., Zanker, H. and Scheinost, A. (2006), "Molecular characterization of uranium(VI) sorption complexes on iron(III)-rich acid mine water colloids", Geochim. Cosmochim. Ac., 70(22), 5469-5487. https://doi.org/10.1016/j.gca.2006.08.031
- Villalobos, M., Trotz, M. and Leckie, J. (2001), "Surface complexation modeling of carbonate effects on the adsorption of Cr(VI), Pb(II), and U(VI) on goethite", Environ. Sci. Technol., 35(19), 3849-3856. https://doi.org/10.1021/es001748k
- Wang, C.B. and Zhang, W.X. (1997), "Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs", Environ. Sci. Technol., 31(7), 2154-2156. https://doi.org/10.1021/es970039c
- Wazne, M., Korfiatis, G.P. and Meng, X. (2003), "Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide", Environ. Sci. Technol., 37(16), 3619-3624. https://doi.org/10.1021/es034166m
- Wersin, P., Hochella Jr, M.F., Persson, P., Redden, G., Leckie, J.O. and Harris, D.W. (1994), "Interaction between aqueous uranium (VI) and sulfide minerals: spectroscopy evidence for sorption and reduction", Geochim. Cosmochim. Acta ., 58(3), 2829-2843. https://doi.org/10.1016/0016-7037(94)90117-1
- Worthers, M., Charlet, L., Linde, P., Rickard, D. and Weijden, C. (2005), "Surface chemistry of disordered mackinawite (FeS)", Geochim. Cosmochim. Ac., 69(14), 3469-3481. https://doi.org/10.1016/j.gca.2005.01.027
- Yan, W., Herzing, A., Kiely, C. and Zhang, W. (2010), "Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic specie sin water", J. Contam. Hydrol., 118(3-4), 96-104. https://doi.org/10.1016/j.jconhyd.2010.09.003
- Yanina, S. and Rosso, K. (2008), "Linked reactivity at mineral-water interfaces through bulk crystal conduction", Science, 320(5873), 218-222. https://doi.org/10.1126/science.1154833
- Yoon, R., Salman, T. and Donnay, G. (1978), "Predicting points of zero charge of oxides and hydroxides", J. Colloid. Interf. Sci., 70(3), 483-493.
Cited by
- Effect of promoter and noble metals and suspension pH on catalytic nitrate reduction by bimetallic nanoscale Fe0catalysts vol.37, pp.9, 2016, https://doi.org/10.1080/09593330.2015.1101166
- Effect of NaBH 4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p -nitrophenol vol.182, 2016, https://doi.org/10.1016/j.apcatb.2015.10.006
- Adsorption/desorption of uranium on iron-bearing soil mineral surface vol.4, pp.2, 2015, https://doi.org/10.12989/aer.2015.4.2.135
- Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution vol.49, pp.17, 2015, https://doi.org/10.1021/acs.est.5b01298
- The removal of uranium onto carbon-supported nanoscale zero-valent iron particles vol.16, pp.12, 2014, https://doi.org/10.1007/s11051-014-2813-4
- Advances in Surface Passivation of Nanoscale Zerovalent Iron: A Critical Review vol.52, pp.21, 2013, https://doi.org/10.1021/acs.est.8b01734
- Detection of colloidal silver chloride near solubility limit vol.985, pp.None, 2013, https://doi.org/10.1088/1742-6596/985/1/012006
- Aqueous U(VI) removal by green rust and vivianite at phosphate-rich environment vol.11, pp.3, 2013, https://doi.org/10.12989/mwt.2020.11.3.207
- Facile construction of Fe, N and P co-doped carbon spheres by carbothermal strategy for the adsorption and reduction of U(VI) vol.10, pp.57, 2013, https://doi.org/10.1039/d0ra06252a
- Exploration of the degradation mechanism of ciprofloxacin in water by nano zero-valent iron combined with activated carbon and nickel vol.345, pp.None, 2022, https://doi.org/10.1016/j.molliq.2021.118212