DOI QR코드

DOI QR Code

Formation of surface mediated iron colloids during U(VI) and nZVI interaction

  • Shin, Youngho (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Bae, Sungjun (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Woojin (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2013.05.31
  • Accepted : 2013.06.07
  • Published : 2013.09.25

Abstract

We investigated that removal of aqueous U(VI) by nano-sized Zero Valent Iron (nZVI) and Fe(II) bearing minerals (controls) in this study. Iron particles showed different U(VI) removal efficiencies (Mackinawite: 99%, green rust: 95%, nZVI: 91%, magnetite: 87%, pyrite: 59%) due to their different PZC (Point of Zero Charge) values and surface areas. In addition, noticeable amount of surface Fe(II) (181 ${\mu}M$) was released from nZVI suspension in 6 h and it increased to 384 ${\mu}M$ in the presence of U(VI) due to ion-exchange of U(VI) with Fe(II) on nZVI surface. Analysis of Laser-Induced Breakdown Detection (LIBD) showed that breakdown probabilities in both filtrates by 20 and 200 nm sizes was almost 24% in nZVI suspension with U(VI), while 1% of the probabilities were observed in nZVI suspension without U(VI). It indicated that Fe(II) colloids in the range under 20 nm were generated during the interaction of U(VI) and nZVI. Our results suggest that Fe(II) colloids generated via ion-exchange process should be carefully concerned during long-term remediation site contaminated by U(VI) because U could be transported to remote area through the adsorption on Fe(II) colloids.

Keywords

References

  1. Alonso, U., Missana, T., Geckeis, H., Garcia-Gutierrez, M., Turrero, M., Mori, R., Schafer, T., Patelli, A. and Rigato, V. (2006), "Role of inorganic colloids generated in a high-level deep geological repository in the migration of radionuclides: Open questions", J. Iberian Geol., 32(1), 79-94.
  2. Amir, A. and Lee, W. (2011), "Enhanced reductive dechlorination of tetrachloroethene by nano-sized zerovalent iron with vitamin B12", Chem. Eng. J., 170(2-3), 492-497. https://doi.org/10.1016/j.cej.2011.01.048
  3. Amir, A. and Lee, W. (2012), "Enhanced reductive dechlorination of tetrachloroethene during reduction of cobalamin (III) by nano-mackinawite", J. Hazard. Mater., 235-236, 359-366. https://doi.org/10.1016/j.jhazmat.2012.08.017
  4. Bae, S. and Lee, W. (2010), "Inhibition of nZVI reactivity by magnetite during the reductive degradation of 1,1,1-TCA in nZVI/magnetite suspension", Appl. Catal. B-Environ., 96(1-2), 10-17. https://doi.org/10.1016/j.apcatb.2010.01.028
  5. Bargar, J., Reitmeyer, R., Lenhart, J. and Davis, J. (2000), "Characterization of U(VI)-carbonato complexes on hematite: EXAFS and electrophoretic mobility measurements", Geochim. Cosmochim. Ac., 64(16), 2737-2749. https://doi.org/10.1016/S0016-7037(00)00398-7
  6. Barnett, M., Jardine, P. and Brooks, S. (2002), "U(VI) adsorption to heterogeneous subsurface media: Application of a surface complexation model", Environ. Sci. Technol., 36(5), 937-942. https://doi.org/10.1021/es010846i
  7. Charlet, L., Liger, E. and Gerasimo, P. (1998), "Decontamination of TCE- and U-rich waters by granular iron: Role of sorbed Fe(II)", J. Environ. Eng., 124(1), 25-30. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:1(25)
  8. Cho, C., Bae, S. and Lee, W. (2012), "Enhanced degradation of TNT and RDX by bio-reduced iron bearing soil minerals", Adv. Environ. Res., Int. J., 1(1), 1-14. https://doi.org/10.12989/aer.2012.1.1.001
  9. Choi, K. and Lee, W. (2012), "Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II)", J. Hazard. Mater., 211-212(15), 146-153. https://doi.org/10.1016/j.jhazmat.2011.10.056
  10. Descostes, M., Schlegel, M., Eglizaud, N., Descamps, F., Miserque, F. and Simoni, E. (2010), "Uptake of uranium and trace elements in pyrite (FeS2) suspensions", Geochim. Cosmochim. Ac., 74(5), 1551-1562. https://doi.org/10.1016/j.gca.2009.12.004
  11. Dickinson, M. and Scott, T. (2010), "The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent", J. Hazard. Mater., 178(1-3), 171-179. https://doi.org/10.1016/j.jhazmat.2010.01.060
  12. Elsner, M., Schwarzenbach, R. and Haderlein, S. (2004), "Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants", Environ. Sci. Technol., 38(3), 799-807. https://doi.org/10.1021/es0345569
  13. Fiedor, J.N., Bostick, W.D., Jarabek, R.J. and Farrell, J. (1998), "Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy", J. Environ. Sci. Technol., 32(10), 1466-1473. https://doi.org/10.1021/es970385u
  14. Grenthe, I., Fuger, J., Konings, R., Lemire, R., Muller, A., Nguyen-trung cregu, C., Wanner, H. and Forest, I. (2003), Chemical Thermodynamics of Uranium, OECD publication, Paris, France.
  15. Gu, B., Liang, L., Dickey, M., Yin, X. and Dai, S. (1998), "Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation", Environ. Sci. Technol., 39(12), 3366-3373.
  16. Han, D., Batchelor, B. and Abdel-Wahab, A. (2012), "Sorption of selenium(IV) and selenium(VI) onto synthetic pyrite (FeS2): Spectroscopic and microscopic analyses", J. Colloid. Interf. Sci., 368(1), 496-504. https://doi.org/10.1016/j.jcis.2011.10.065
  17. He, Y. and Traina, S. (2005), "Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation", Environ. Sci. Technol., 39(12), 4499-4504. https://doi.org/10.1021/es0483692
  18. Hua, B. and Deng, B. (2008), "Reductive immobilization of uranium(VI) by amorphous iron sulfide", Environ. Sci. Technol., 42(23), 8703-8708. https://doi.org/10.1021/es801225z
  19. Hyun, S., Davis, J., Sun, K., and Hayes, K. (2012), "Uranium(VI) reduction by iron(II) monosulfide mackinawite", Environ. Sci. Technol., 46(6), 3369-3376. https://doi.org/10.1021/es203786p
  20. Kanel, S., Manning, B., Charlet, L. and Choi, H. (2005), "Removal of arsenic(III) from groundwater by nanoscale zero-valent iron", Environ. Sci. Technol., 39(5), 1291-1298. https://doi.org/10.1021/es048991u
  21. Katsoyiannis, I., Althoff, H., Bartel, H. and Jekel, M. (2006), "The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides", Water Res., 40(19), 3646-3652. https://doi.org/10.1016/j.watres.2006.06.032
  22. Kim, E. and Batchelor, B. (2009), "Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite", Environ. Sci. Technol., 43(8), 2899-2904. https://doi.org/10.1021/es803114g
  23. Kirana, Y.P. and Yun, J. (2011), "Formation and stability of aluminosilicate colloids by coprecipitation", Master's Dissertation, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
  24. Li, Z. and Zhang, W. (2006), "Iron nanoparticles: The core-shell structure and unique properties for Ni(II) sequestration", Langmuir., 22(10), 4638-4642. https://doi.org/10.1021/la060057k
  25. Liger, E., Charlet L. and Van Cappellen, P. (1999), "Surface catalysis of uranium (VI) reduction by iron (II)", Geochim. Cosmochim. Acta., 63(19-20), 2939-2955. https://doi.org/10.1016/S0016-7037(99)00265-3
  26. Martin, J., Herzing, A., Yan, W., Li, X., Koel, B., Kiely, C. and Zhang, W. (2008), "Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles", Langmuir., 24(8), 4329-4334. https://doi.org/10.1021/la703689k
  27. Matta, R., Hanna, K., Kone, T. and Chiron, S. (2008), "Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH", Chem. Eng. J., 144(3), 453-458. https://doi.org/10.1016/j.cej.2008.07.013
  28. Missana, T., Garcia-Gutierrez, M. and Fernndez, V. (2003), "Uranium(VI) sorption on colloidal magnetite under anoxic environment: Experimental study and surface complexation modeling", Geochim. Cosmochim. Ac., 67(14), 2543-2550. https://doi.org/10.1016/S0016-7037(02)01350-9
  29. Missana, T., Maffiotte, C. and Garcia-Gutierrez, M. (2003), "Surface reaction kinetics between nanocrystalline magnetite and uranyl", J. Colloid Interf. Sci., 261(1), 154-160. https://doi.org/10.1016/S0021-9797(02)00227-8
  30. Moulin, C., Laszak, I., Moulin V. and Tondre, C. (1998), "Time-resolved laser induced fluorescence as a unique tool for low-level uranium speciation", Appl., Spectrosc., 52(4), 528-535. https://doi.org/10.1366/0003702981944076
  31. Noubactep, C., Meinrath, G., Dietrich, P. and Merkel, B. (2003), "Mitigating uranium in groundwater: Prospects and limitations", Environ. Sci. Technol., 37(18), 4304-4308. https://doi.org/10.1021/es034296v
  32. Noubactep, C., Schoner, A. and Meinrath, G. (2006), "Mechanism of uranium removal from the aqueous solution by elemental iron", J. Hazard. Mater., 32(2-3), 202-212.
  33. Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F, Merkulov, A., Clark, S.B., Tkachev, V.V. and Myasoedov, B.F. (2006), "Colloid transport of plutonium in the far-field of the Mayak production association, Russia", Science, 314(5799), 638-641. https://doi.org/10.1126/science.1131307
  34. O'Loughlin, E.J., Kelly, S.D., Cook, R.E., Csencsits, R. and Kemner, K.M. (2003), "Reduction of uranium (VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of $UO_{2}$ nanoparticles", Environ. Sci. Technol., 37(4), 721-727. https://doi.org/10.1021/es0208409
  35. Riba, $UO_{2}$ Scott, T.B., Ragnarsdottir, V. and Allen, G.C. (2008), "Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles", Geochim. Cosmochim. Ac., 72(16), 4047-4057. https://doi.org/10.1016/j.gca.2008.04.041
  36. Rovira, M., Aamrani, S., Duro, L., Gimenez, J., Pablo, J. and Bruno, J. (2007), "Interaction of uranium with in situ anoxically generated magnetite on steel", J. Hazard. Mater., 147(3), 726-731. https://doi.org/10.1016/j.jhazmat.2007.01.067
  37. Scott, T.B., Allen, G.C., Heard, P.J. and Randell, M.G. (2005), "Reduction of U(VI) to U(IV) on the surface of magnetite", Geochim. Cosmochim. Ac., 69(24), 5639-5646. https://doi.org/10.1016/j.gca.2005.07.003
  38. Sparks, D. (1995), Environmental Soil Chemistry, Academic Press, San Diego, NY, USA.
  39. Srinivasan, R., Lin, R., Spicer, R.L. and Davis, B.H. (1996), "Structural features in the formation of the green rust intermediate and $\gamma$-FeOOH", Colloid. Surface. A., 113(1-2), 97-105. https://doi.org/10.1016/0927-7757(96)03594-7
  40. Stookey, L.L. (1970), "Ferrozine - A new spectrophotometric reagent for iron", Anal. Chem., 42(7), 779-781. https://doi.org/10.1021/ac60289a016
  41. Sun, Y., Li, X., Cao, J., Zhang, W. and Wang, H. (2006), "Characterization of zero-valent iron nanoparticles", Adv. Colloid. Interfac., 120(1-3), 47-56 https://doi.org/10.1016/j.cis.2006.03.001
  42. Ulrich, K., Rossberg, A., Foerstendorf, H., Zanker, H. and Scheinost, A. (2006), "Molecular characterization of uranium(VI) sorption complexes on iron(III)-rich acid mine water colloids", Geochim. Cosmochim. Ac., 70(22), 5469-5487. https://doi.org/10.1016/j.gca.2006.08.031
  43. Villalobos, M., Trotz, M. and Leckie, J. (2001), "Surface complexation modeling of carbonate effects on the adsorption of Cr(VI), Pb(II), and U(VI) on goethite", Environ. Sci. Technol., 35(19), 3849-3856. https://doi.org/10.1021/es001748k
  44. Wang, C.B. and Zhang, W.X. (1997), "Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs", Environ. Sci. Technol., 31(7), 2154-2156. https://doi.org/10.1021/es970039c
  45. Wazne, M., Korfiatis, G.P. and Meng, X. (2003), "Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide", Environ. Sci. Technol., 37(16), 3619-3624. https://doi.org/10.1021/es034166m
  46. Wersin, P., Hochella Jr, M.F., Persson, P., Redden, G., Leckie, J.O. and Harris, D.W. (1994), "Interaction between aqueous uranium (VI) and sulfide minerals: spectroscopy evidence for sorption and reduction", Geochim. Cosmochim. Acta ., 58(3), 2829-2843. https://doi.org/10.1016/0016-7037(94)90117-1
  47. Worthers, M., Charlet, L., Linde, P., Rickard, D. and Weijden, C. (2005), "Surface chemistry of disordered mackinawite (FeS)", Geochim. Cosmochim. Ac., 69(14), 3469-3481. https://doi.org/10.1016/j.gca.2005.01.027
  48. Yan, W., Herzing, A., Kiely, C. and Zhang, W. (2010), "Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic specie sin water", J. Contam. Hydrol., 118(3-4), 96-104. https://doi.org/10.1016/j.jconhyd.2010.09.003
  49. Yanina, S. and Rosso, K. (2008), "Linked reactivity at mineral-water interfaces through bulk crystal conduction", Science, 320(5873), 218-222. https://doi.org/10.1126/science.1154833
  50. Yoon, R., Salman, T. and Donnay, G. (1978), "Predicting points of zero charge of oxides and hydroxides", J. Colloid. Interf. Sci., 70(3), 483-493.

Cited by

  1. Effect of promoter and noble metals and suspension pH on catalytic nitrate reduction by bimetallic nanoscale Fe0catalysts vol.37, pp.9, 2016, https://doi.org/10.1080/09593330.2015.1101166
  2. Effect of NaBH 4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p -nitrophenol vol.182, 2016, https://doi.org/10.1016/j.apcatb.2015.10.006
  3. Adsorption/desorption of uranium on iron-bearing soil mineral surface vol.4, pp.2, 2015, https://doi.org/10.12989/aer.2015.4.2.135
  4. Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution vol.49, pp.17, 2015, https://doi.org/10.1021/acs.est.5b01298
  5. The removal of uranium onto carbon-supported nanoscale zero-valent iron particles vol.16, pp.12, 2014, https://doi.org/10.1007/s11051-014-2813-4
  6. Advances in Surface Passivation of Nanoscale Zerovalent Iron: A Critical Review vol.52, pp.21, 2013, https://doi.org/10.1021/acs.est.8b01734
  7. Detection of colloidal silver chloride near solubility limit vol.985, pp.None, 2013, https://doi.org/10.1088/1742-6596/985/1/012006
  8. Aqueous U(VI) removal by green rust and vivianite at phosphate-rich environment vol.11, pp.3, 2013, https://doi.org/10.12989/mwt.2020.11.3.207
  9. Facile construction of Fe, N and P co-doped carbon spheres by carbothermal strategy for the adsorption and reduction of U(VI) vol.10, pp.57, 2013, https://doi.org/10.1039/d0ra06252a
  10. Exploration of the degradation mechanism of ciprofloxacin in water by nano zero-valent iron combined with activated carbon and nickel vol.345, pp.None, 2022, https://doi.org/10.1016/j.molliq.2021.118212