References
- D. D. Bainov and P. S. Simeonov, Systems with Impulsive Effect: Stability, Theory and Applications, Ellis Horwood Series in Mathematics and Its Application, 1989.
- D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Asymptotic Properties of the Solutions, World Scientific Publishing Co. Inc., River Edge, NJ, 1995.
- S. K. Choi and N. J. Koo, h-Stability for nonlinear perturbed systems, Ann. Differential Equations 11 (1995), 1-9.
- S. K. Choi and H. S. Ryu, h-Stability in differential systems, Bull. Inst. Acad. Sinica 21 (1993), 245-262.
-
S. K. Choi, N. J. Koo, and H. S. Ryu, h-Stability of differential systems via
$t_{\infty}$ -similarity, Bull. Korean Math. Soc. 34 (1997), 371{383. - S. K. Choi, N. J. Koo, and C. Ryu, h-Stability of linear impulsive differential equations via similarity, J. Chungcheong Math. Soc. 24 (2011), 393-400. https://doi.org/10.14403/jcms.2013.26.4.811
- V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific Publishing Co. Pte. Ltd., Singapore, 1989.
- M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), 161-175.
- M. Pinto, Stability of nonlinear differential systems, Applicable Analysis 43 (1992), 1-20. https://doi.org/10.1080/00036819208840049
Cited by
- A CONVERSE THEOREM ON h-STABILITY VIA IMPULSIVE VARIATIONAL SYSTEMS vol.53, pp.5, 2016, https://doi.org/10.4134/JKMS.j150428
- IMPULSIVE INTEGRAL INEQUALITIES WITH A NON-SEPARABLE KERNEL vol.27, pp.4, 2014, https://doi.org/10.14403/jcms.2014.27.4.651
- Variationally stable impulsive differential systems vol.30, pp.4, 2015, https://doi.org/10.1080/14689367.2015.1068742
- STABILITY OF LINEAR IMPULSIVE DIFFERENTIAL EQUATIONS VIA t∞-SIMILARITY vol.26, pp.4, 2013, https://doi.org/10.14403/jcms.2013.26.4.811
- STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL SYSTEMS OF NON-INTEGER ORDER vol.56, pp.1, 2013, https://doi.org/10.4134/jkms.j180106