References
- Carrera, E., Giunto, G. and Petrolo M. (2011), Beam Structures, Classical and advanced Theories, John Wiley & Sons Inc., New York, NY, USA.
- Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33, 335-340. https://doi.org/10.1115/1.3625046
- De Rosa, M.A. (1995), "Free vibrations of Timoshenko beams on two-parametric elastic foundation", Comput. Struct., 57, 151-156. https://doi.org/10.1016/0045-7949(94)00594-S
- Geist, B. and McLaughlin, J.R. (1997), "Double eigenvalues for the uniform Timoshenko beam", Appl. Math. Letters, 10(3), 129-134.
- Inman, D.J. (1994), Engineering Vibration, Prentice Hall, Inc., Englewood Cliffs, New Jersey.
- Levinson, M. (1981a), "A new rectangular beam theory", J. Sound Vib., 74(1), 81-87. https://doi.org/10.1016/0022-460X(81)90493-4
- Levinson, M. (1981b), "Further results of a new beam theory", J. Sound Vib., 77(3), 440-444. https://doi.org/10.1016/S0022-460X(81)80180-0
- Li, X.F. (2008), "A unified approach for analysing static and dynamic behaviours of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 32(5), 1210-1229.
- Matsunaga, H. (1999), "Vibration and buckling of deep beam-columns on two-parameter elastic foundations", J. Sound Vib., 228, 359-376. https://doi.org/10.1006/jsvi.1999.2415
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech., 18(1), 31-28.
- Pavazza, R. (2005), "Torsion of thin-walled beams of open cross-sections with influence of shear", Int. J. Mech. Sci., 47, 1099-1122. https://doi.org/10.1016/j.ijmecsci.2005.02.007
- Pavazza, R. (2007), Introduction to the Analysis of Thin-Walled Beams, Kigen, Zagreb, Croatia. (in Croatian)
- Pilkey, W.D. (2002), Analysis and Design of Elastic Beams, John Wiley & Sons Inc., New York, NY, USA.
- Reddy, J.N. (1997), "On locking free shear deformable beam elements", Comput. Meth. Appl. Mech. Eng., 149, 113-132. https://doi.org/10.1016/S0045-7825(97)00075-3
- Senjanovic, I. and Fan, Y. (1989), "A higher-order flexural beam theory", Comput. Struct., 10, 973-986.
- Senjanovic, I. and Fan, Y. (1990), "The bending and shear coefficients of thin-walled girders", Thin-Wall. Struct., 10, 31-57. https://doi.org/10.1016/0263-8231(90)90004-I
- Senjanovic, I. and Fan, Y. (1993), "A finite element formulation of ship cross-sectional stiffness parameters", Brodogradnja, 41(1), 27-36.
- Senjanovic, I. and Tomasevic, S. (1999), "Longitudinal strength analysis of a Cruise Vessel in early design stage", Brodogradnja, 47(4), 350-355.
- Senjanovic, I., Toma?evic, S. and Vladimir, N. (2009), "An advanced theory of thin-walled structures with application to ship vibrations", Mar. Struct., 22(3), 387-437. https://doi.org/10.1016/j.marstruc.2009.03.004
- Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel. Comp. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Sniady, P. (2008), "Dynamic response of a Timoshenko beam to a moving force", J. Appl. Mech., 75(2), 0245031-0245034.
- Stojanovic, V. and Kozic, P. (2012), "Forced transverse vibration of Rayleigh and Timoshenko double-beam system with effect of compressive axial load", Int. J. Mech. Sci., 60, 59-71. https://doi.org/10.1016/j.ijmecsci.2012.04.009
- Stojanovic, V., Kozic, P. and Janevski, G. (2013), "Exact closed-form solutions for the natural frequencies and stability of elastically connected multiple beam system using Timoshenko and higher-order shear deformation theory", J. Sound Vib., 332, 563-576. https://doi.org/10.1016/j.jsv.2012.09.005
- Timoshenko, S.P. (1921), "On the correction for shear of the differential equation for transverse vibration of prismatic bars", Phylosoph. Magazine, 41(6), 744-746.
- Timoshenko, S.P. (1922), "On the transverse vibrations of bars of uniform cross section", Phylosoph. Magazine, 43, 125-131.
- Timoshenko, S.P. (1937), Vibration Problems in Engineering, 2nd Edition, D. van Nostrand Company, Inc. New York, NY, USA.
- van Rensburg, N.F.J. and van der Merve, A.J. (2006), "Natural frequencies and modes of a Timoshenko beam", Wave Motion, 44, 58-69. https://doi.org/10.1016/j.wavemoti.2006.06.008
- Zhou, D. (2001), "Vibrations of Mindlin rectangular plates with elastically restrained edges using static Timoshenko beam functions with Rayleigh-Ritz method", Intl. J. Solids Struct., 38, 5565-5580. https://doi.org/10.1016/S0020-7683(00)00384-X
Cited by
- On the whole spectrum of Timoshenko beams. Part I: a theoretical revisitation vol.67, pp.2, 2016, https://doi.org/10.1007/s00033-015-0592-0
- Large-scale ordering of nanoparticles using viscoelastic shear processing vol.7, 2016, https://doi.org/10.1038/ncomms11661
- On new first-order shear deformation plate theories vol.73, 2016, https://doi.org/10.1016/j.mechrescom.2016.02.005
- New first order shear deformation beam theory with in-plane shear influence vol.110, 2016, https://doi.org/10.1016/j.engstruct.2015.11.032
- A new finite element formulation for vibration analysis of thick plates vol.7, pp.2, 2015, https://doi.org/10.1515/ijnaoe-2015-0023
- An approximate analytical procedure for natural vibration analysis of free rectangular plates vol.95, 2015, https://doi.org/10.1016/j.tws.2015.06.015
- On the whole spectrum of Timoshenko beams. Part II: further applications vol.67, pp.2, 2016, https://doi.org/10.1007/s00033-015-0596-9
- Boundary discontinuous Fourier analysis of thick beams with clamped and simply supported edges via CUF vol.30, pp.5, 2017, https://doi.org/10.1016/j.cja.2017.06.014
- Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media vol.10, pp.7, 2017, https://doi.org/10.3390/ma10070688
- Free flexural vibration of symmetric beams with inertia induced cross section deformations vol.119, 2017, https://doi.org/10.1016/j.tws.2017.05.032
- A Three-Spring Pseudorigid-Body Model for Soft Joints With Significant Elongation Effects vol.8, pp.6, 2016, https://doi.org/10.1115/1.4032862
- Symplectic Method for Natural Modes of Beams Resting on Elastic Foundations vol.144, pp.4, 2018, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001427
- An Experimental and Theoretical Determination of Oscillatory Shear-Induced Crystallization Processes in Viscoelastic Photonic Crystal Media vol.14, pp.18, 2021, https://doi.org/10.3390/ma14185298