DOI QR코드

DOI QR Code

Exploring and calibrating local curvature effect of cortical bone for quantitative ultrasound (QUS)

  • Chen, Jiangang (The Department of Mechanical Engineering, The Hong Kong Polytechnic University) ;
  • Su, Zhongqing (The Department of Mechanical Engineering, The Hong Kong Polytechnic University) ;
  • Cheng, Li (The Department of Mechanical Engineering, The Hong Kong Polytechnic University) ;
  • Ta, De-An (The Department of Electronic Engineering, Fudan University)
  • Received : 2013.07.09
  • Accepted : 2013.10.26
  • Published : 2013.11.25

Abstract

Apart from thinning of cortical layers, the local bone curvature, varying along bone periphery, modulates ultrasound waves as well, which is however often underestimated or overlooked in clinical quantitative ultrasound (QUS). A dedicated three-dimensional finite element modelling technique for cortical bones was established, for quantitatively exploring and calibrating the effect of local curvature of cortical bone on ultrasound. Using a correlation-based mode extraction technique, high-velocity group (HVG) and low-velocity group (LVG) wave modes in a human radius were examined. Experimental verification using acrylic cylinders and in vitro testing using a porcine femur were accomplished. Results coherently unravelled the cortical curvature exerts evident influence on bone-guided ultrasound when RoC/${\lambda}$ <1 for HVG mode and RoC/${\lambda}$ <2 for LVG mode (RoC/${\lambda}$: the ratio of local bone curvature radius to wavelength); the sensitivity of LVG mode to bone curvature is higher than HVG mode. It has also been demonstrated the local group velocity of an HVG or LVG mode at a particular skeletal site is equivalent to the velocity when propagating in a uniform cylinder having an outer radius identical to the radius of curvature at that site. This study provides a rule of thumb to compensate for the effect of bone curvature in QUS.

Keywords

References

  1. Alleyne, D.N., Pavlakovic, B., Lowe, M.J.S. and Cawley, P. (2001), "Rapid long-range inspection of chemical plant pipework using guided waves", Rev. Prog. Quant. Nondestr. Eval., 20, 180-187.
  2. Bossy, E., Talmant, M., Defontaine, M., Patat, F. and Laugier, P. (2004), "Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials", IEEE Trans. Ultrason. Ferroelectr. Freq. Contral, 51(1), 71-79. https://doi.org/10.1109/TUFFC.2004.1268469
  3. Bossy, E., Talmant, M. and Laugier, P. (2002), "Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study", J. Acoust. Soc. Am., 112(1), 297-307. https://doi.org/10.1121/1.1480836
  4. Cau, F., Fanni, A., Montisci, A., Testoni, P. and Usai, M. (2006), "A signal-processing tool for nondestructive testing of inaccessible pipes", Eng. Appl. Artif. Intel., 19(7), 753-760. https://doi.org/10.1016/j.engappai.2006.05.005
  5. Cawley, P., Lowe, M.J.S., Alleyne, D.N., Pavlakovic, B. and Wilcox, P. (2003), "Practical long range guided wave testing: applications to pipes and rail", Mater. Eval., 61(1), 66-74.
  6. Cheeke, J.D.N., Li, X. and Wang, Z. (1998), "Observation of flexural Lamb waves (A0 mode) on waterfilled cylindrical shells", J. Acoust. Soc. Am., 104(6), 3678-3680. https://doi.org/10.1121/1.423951
  7. Chen, J., Cheng, L., Su, Z. and Qin, L. (2013a), "Modeling elastic waves in coupled media: estimate of soft tissue influence and application to quantitative ultrasound", Ultrasonics, 53(2), 350-362. https://doi.org/10.1016/j.ultras.2012.06.018
  8. Chen, J. and Su, Z. (2013b), "On ultrasound waves in bones with coupled soft tissues: a mechanism study and in vitro calibration", Ultrasonics. (in press)
  9. Chen, J., Su, Z. and Cheng, L. (2010a), "Identification of corrosion damage in submerged structures using anti-symmetric Lamb wave mode", Proceedings of the 5th European Workshop on Structural Health Monitoring, Naples, Italy, Jul.
  10. Chen, J., Su, Z. and Cheng, L. (2012b), "The medium coupling effect on propagation of guided waves in engineering structures and human bone phantoms", Coupled Systems Mechanics, 1(4), 297-309. https://doi.org/10.12989/csm.2012.1.4.297
  11. Chen, J., Su, Z., Cheng, L. and Qin, L. (2010b), "Influence of soft tissues on ultrasonic Lamb waves in synthesised soft tissue-bone phantoms", IFMBE Proceedings, 31(6), 1315-1318. https://doi.org/10.1007/978-3-642-14515-5_335
  12. Dong, X.N. and Guo, X.E. (2004), "The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity", J. Biomech., 37(8), 1281-1287. https://doi.org/10.1016/j.jbiomech.2003.12.011
  13. Laugier, P. and Haiat , G. (2011), Bone Quantitative Ultrasound, Springer, New York.
  14. Le, L.H., Gu, Y.J., Li, Y.P. and Zhang, C. (2010), "Probing long bones with ultrasonic body waves", Appl. Phys. Lett., 96(11), 114102. https://doi.org/10.1063/1.3300474
  15. Lee, K.I. and Yoon, S.W. (2004), "Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia", J. Acoust. Soc. Am., 115(6), 3210-3217. https://doi.org/10.1121/1.1707086
  16. Lefebvre, F., Deblock, Y., Campistron, P., Ahite, D. and Fabre, J.J. (2002), "Development of a new ultrasonic technique for bone and biomaterials in vitro characterization", J. Biomed. Mater. Res., 63(4), 441-446. https://doi.org/10.1002/jbm.10261
  17. Leonard, K.R. and Hinders, M.K. (2003), "Guided wave helical ultrasonic tomography of pipes", J. Acoust. Soc. Am., 114(2), 767-774. https://doi.org/10.1121/1.1593068
  18. Li, F.C., Su, Z.Q., Ye, L. and Meng, G. (2006), "A correlation filtering-based matching pursuit (CF-MP) for damage identification using Lamb waves", Smart Mater. Struct., 15(6), 1585-1594. https://doi.org/10.1088/0964-1726/15/6/010
  19. Li, J. and Rose, J.L. (2006), "Natural beam focusing of non-axisymmetric guided waves in large-diameter pipes", Ultrasonics, 44(1), 35-45. https://doi.org/10.1016/j.ultras.2005.07.002
  20. Lowe, M.J.S., Alleyne, D.N. and Cawley, P. (1998), "Defect detection in pipes using guided waves", Ultrasonics, 36(1-5), 147-154. https://doi.org/10.1016/S0041-624X(97)00038-3
  21. Minonzio, J.G., Foiret, J., Talmant, M. and Laugier, P. (2011), "Impact of attenuation on guided mode wavenumber measurement in axial transmission on bone mimicking plates", J. Acoust. Soc. Am., 130(6), 3574-3582. https://doi.org/10.1121/1.3652884
  22. Minonzio, J.G., Talmant, M. and Laugier, P. (2010), "Guided wave phase velocity measurement using multiemitter and multi-receiver arrays in the axial transmission configuration", J. Acoust. Soc. Am., 127(5), 2913-2919. https://doi.org/10.1121/1.3377085
  23. Moilanen, P., Nicholson, P.H.F., Kilappa, V., Cheng, S. and Timonen, J. (2006), "Measuring guided waves in long bones: Modeling and experiments in free and immersed plates", Ultrasound. Med. Biol., 32(5), 709-719. https://doi.org/10.1016/j.ultrasmedbio.2006.02.1402
  24. Moilanen, P., Nicholson, P.H.F., Kilappa, V., Cheng, S.L. and Timonen, J. (2007a), "Assessment of the cortical bone thickness using ultrasonic guided waves: Modelling and in vitro study", Ultrasound. Med. Biol., 33(2), 254-262. https://doi.org/10.1016/j.ultrasmedbio.2006.07.038
  25. Moilanen, P., Talmant, M., Nicholson, P.H.F., Cheng, S.L., Timonen, J. and Laugier, P. (2007b), "Ultrasonically determined thickness of long cortical bones: Three-dimensional simulations of in vitro experiments", J. Acoust. Soc. Am., 122(4), 2439-2445. https://doi.org/10.1121/1.2769619
  26. Muller, M., Moilanen, P., Bossy, E., Nicholson, P., Kilappa, V., Timonen, J., Talmant, M., Cheng, S. and Laugier, P. (2005), "Comparison of three ultrasonic axial transmission methods for bone assessment", Ultrasound. Med. Biol., 31(5), 633-642. https://doi.org/10.1016/j.ultrasmedbio.2005.02.001
  27. Nicholson, P.H.F., Moilanen, P., Karkkainen, T., Timonen, J. and Cheng, S. (2002), "Guided ultrasonic waves in long bones: Modelling, experiment and in vivo application", Physiol. Meas., 23(4), 755-768. https://doi.org/10.1088/0967-3334/23/4/313
  28. Palmeri, M.L., Sharma, A.C., Bouchard, R.R., Nightingale, R.W. and Nightingale, K.R. (2005), "A finiteelement method model of soft tissue response to impulsive acoustic radiation force", IEEE Trans. Ultrason. Ferroelectr. Freq. Contral, 52(10), 1699-1712. https://doi.org/10.1109/TUFFC.2005.1561624
  29. Rose, J.L. (1999), Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge, MA.
  30. Sasso, M., Talmant, M., Haiat, G., Laugier, P. and Naili, S. (2006), "Development of a multi-dimensional SVD based technique for multi-receivers ultrasound used in bone status characterization", Fourth IEEE Workshop on Sensor Array and Multichannel Processing.
  31. Shi, L.H. and Ihn, J.B. (2001), "Identification of time-domain refletometry measurement results by wavelet modeling", The 3rd International Workshoip on Strucctural Health Monitoring, Stanford.
  32. Song, X., Ta, D. and Wang, W. (2011), "Analysis of superimposed ultrasonic guided waves in long bones by the joint approximate diagonalization of eigen-matrices algorithm", Ultrasound. Med. Biol., 37(10), 1704-1713. https://doi.org/10.1016/j.ultrasmedbio.2011.06.028
  33. Su, Z., Yang, C., Pan, N., Ye, L. and Zhou, L.-M. (2007), "Assessment of delamination in composite beams using shear horizontal (SH) wave mode", Compos. Sci. Technol., 67(2), 244-251. https://doi.org/10.1016/j.compscitech.2006.08.019
  34. Su, Z. and Ye, L. (2005), "A fast damage locating approach using digital damage fingerprints extracted from Lamb wave signals", Smart Mater. Struct., 14(5), 1047. https://doi.org/10.1088/0964-1726/14/5/043
  35. Ta, D.A., Huang, K., Wang, W.Q., Wang, Y.Y. and Le, L.H. (2006), "Identification and analysis of multimode guided waves in tibia cortical bone", Ultrasonics, 44(1), e279-e284. https://doi.org/10.1016/j.ultras.2006.06.013
  36. Ta, D.A., Wang, W.Q., Wang, Y.Y., Le, L.H. and Zhou, Y.Q. (2009), "Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone", Ultrasound. Med. Biol., 35(4), 641-652. https://doi.org/10.1016/j.ultrasmedbio.2008.10.007
  37. Talmant, M., Su, Z., Cheng, L. and Laugier, P. (2012a), "Measurement of guided mode wavenumbers in soft tissue-bone mimicking phantoms using ultrasonic axial transmission", Phys. Med. Biol., 57(10), 3025-3037. https://doi.org/10.1088/0031-9155/57/10/3025
  38. Tatarinov, A., Sarvazyan, N. and Sarvazyan, A. (2005), "Use of multiple acoustic wave modes for assessment of long bones: Model study", Ultrasonics, 43(8), 672-680. https://doi.org/10.1016/j.ultras.2005.03.004
  39. Tua, P.S., Quek, S.T. and Wang, Q. (2005), "Detection of cracks in cylindrical pipes and plates using piezoactuated Lamb waves", Smart Mater. Struct., 14(6), 1325-1342. https://doi.org/10.1088/0964-1726/14/6/025
  40. Velichko, A. and Wilcox, P.D. (2009), "Excitation and scattering of guided waves: relationships between solutions for plates and pipes", J. Acoust. Soc. Am., 125(6), 3623-3631. https://doi.org/10.1121/1.3117441
  41. Wang, Q. and Yuan, S. (2009), "Wave rebuilding method for the active Lamb wave based structural damage imaging", Chinese Journal of Astronautics, 30(3), 5.
  42. Xu, K.L., Ta, D.A. and Wang, W.Q. (2010), "Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones", IEEE Trans. Ultrason. Ferroelectr. Freq. Contral, 57(11), 2480-2490. https://doi.org/10.1109/TUFFC.2010.1714
  43. Yu, L., Cheng, L. and Su, Z. (2011), "Correlative sensor array and its applications to identification of damage in plate-like structures", Structural Control and Health Monitoring, 19(8), 650-671.
  44. Zhao, X., Gao, H., Zhang, G., Ayhan, B., Yan, F., Kwan, C. and Rose, J.L. (2007), "Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring", Smart Mater. Struct., 16(4), 1208-1217. https://doi.org/10.1088/0964-1726/16/4/032