DOI QR코드

DOI QR Code

Households' willingness to pay for the residential electricity use

주택용 전력에 대한 지불의사액 분석

  • Lim, Seul-Ye (Department of Energy Policy, Graduate School of Energy & Environment, Seoul National University of Science & Technology) ;
  • Kim, Ho-Young (Department of Energy Policy, Graduate School of Energy & Environment, Seoul National University of Science & Technology) ;
  • Yoo, Seung-Hoon (Department of Energy Policy, Graduate School of Energy & Environment, Seoul National University of Science & Technology)
  • 임슬예 (서울과학기술대학교 에너지환경대학원 에너지정책학과) ;
  • 김호영 (서울과학기술대학교 에너지환경대학원 에너지정책학과) ;
  • 유승훈 (서울과학기술대학교 에너지환경대학원 에너지정책학과)
  • Received : 2013.05.10
  • Accepted : 2013.06.08
  • Published : 2013.06.30

Abstract

Electricity is a basis for human existence. This paper attempts to analyze the households' willingness to pay (WTP) for the residential electricity use. The WTP for the residential electricity use can be defined as the sum of actual price of and additional WTP for it. The former is easily observed in the market, but the second is not observed and thus should be obtained through a WTP survey of households. To this end, this study conducted a survey of randomly selected 1,000 households in Korea in November 2010. The results indicate that the mean additional WTP for the residential electricity use was estimated to be KRW 11.24 per kWh. Given that the average price of residential electricity was KRW 98.07 per kWh at the time of the survey, the economic benefit from the residential electricity use was computed as KRW 109.31 per kWh. This information can be compared with the cost involved in the supply of one kWh of residential electricity.

전력은 인간생존에 있어 기본적인 요소이다. 본 논문에서는 주택용 전력에 대한 가구의 지불의사액(WTP)을 분석하고자 한다. 주택용 전력에 대한 WTP는 전력의 실제 가격과 추가적인 WTP의 합으로 정의된다. 전자는 시장에서 쉽게 관측되지만, 후자는 시장에서 관측이 불가능하므로 직접적인 가구조사를 통해 추정해야만 한다. 이를 위해 2010년 11월 전국 1,000가구를 대상으로 조사를 실시하였다. 분석 결과 주택용 전력 한 단위에 대한 추가적인 평균 WTP는 11.24원/kWh로 나타났다. 조사시점인 2010년 주택용 전력 평균가격은 98.07원/kWh이므로 주택용 전력에 대한 경제적 편익은 이 둘의 합계인 109.31원/kWh으로 추정된다. 이 값은 주택용 전력 1kWh 공급비용과 비교할 수 있을 것이다.

Keywords

References

  1. 한국전력공사, www.kepco.co.kr
  2. Arrow K, Solow R, Portney PR, Leamer EE, Radner R, Schuman H. Report of the NOAA panel on contingent valuation. Federal Register, 1993, 58, 4601-4014.
  3. Austin C, Otegbulu. A contingent valuation model for assessing electricity demand. Journal of Financial Management of Property and Construction, 2011, 16, 126-146. https://doi.org/10.1108/13664381111153114
  4. Borchers AM, Duke JM, Parsons GR. Does willingness to pay for green electricity differ by source Energy Policy 2007;35:3327-34. https://doi.org/10.1016/j.enpol.2006.12.009
  5. Fisher A. The conceptual underpinnings of the contingent valuation method. in: Bjornstad DJ, Kahn JR (eds) The Contingent Valuation of Environmental Resources. Cheltenham: Edward Elgar, 1996, 19-37.
  6. Grösche P, Schröder C. Eliciting public support for greening the electricity mix using random parameter technique. Energy Economics 2011;33:363-70. https://doi.org/10.1016/j.eneco.2010.10.002
  7. Hanemann WM. Welfare evaluations in contingent valuation experiments with discrete responses. American Journal of Agricultural Economics, 1984, 66, 332-341. https://doi.org/10.2307/1240800
  8. Krinsky I, Robb AL. On approximating the statistical properties of elasticities. Review of Economics and Statistics, 1986, 68, 715-719. https://doi.org/10.2307/1924536
  9. Kristrom B. Spike models in contingent valuation. American Journal of Agricultural Economics, 1997, 79, 1013-1023. https://doi.org/10.2307/1244440
  10. McFadden D. Contingent valuation and social choice. American Journal of Agricultural Economics, 1994, 76, 689-708. https://doi.org/10.2307/1243732
  11. Vehkatachalam L. The contingent valuation method: a review. Environmental Impact Assessment Review, 2004, 24, 89-124. https://doi.org/10.1016/S0195-9255(03)00138-0
  12. Woo CK, Pupp RL. Costs of service disruptions to electricity consumers. Energy 1992;17:109-26. https://doi.org/10.1016/0360-5442(92)90061-4
  13. Yoo SH, Kwak SJ. Using a spike model to deal with zero response data from double bounded dichotomous contingent valuation survey. Applied Economics Letters, 2002, 9, 929-932. https://doi.org/10.1080/13504850210139378

Cited by

  1. Estimation of the electricity demand function using a lagged dependent variable model vol.25, pp.2, 2016, https://doi.org/10.5855/ENERGY.2016.25.2.037