References
- Addo, P. A., Billio, M. and Guegan, D. (2013). Nonlinear dynamics and recurrence plots for detecting financial crisis, North American Journal of Economics and Finance, in press.
- Belaire-Franch, J., Contreras, D. and Tordera-Lledo, L. (2002). Assessing nonlinear structures in real exchange rates using recurrence plot strategies, Physica D, 171, 249-264. https://doi.org/10.1016/S0167-2789(02)00625-5
- Chen, W. (2011). Use of recurrence plot and recurrence quantification analysis in Taiwan unemployment rate time series, Physica A, 390, 1332-1342. https://doi.org/10.1016/j.physa.2010.12.020
- Eckmann, J. P., Kamphorst, S. O. and Ruelle, D. (1987). Recurrence plots of dynamical systems, Europhysics Letters, 5, 973-977.
- Guhathakurta, K., Bhattacharya, B. and Chowdhury, A. R. (2010). Using recurrence plot analysis to distinguish between endogenous and exogenous stock market crashes, Physica A, 389, 1874-1882. https://doi.org/10.1016/j.physa.2009.12.061
- Hwang, E. and Shin, D. W. (2013). Stationary bootstrap prediction intervals for GARCH(p, q), Communications of the Korean Statistical Society, 20, 41-52. https://doi.org/10.5351/CSAM.2013.20.1.041
- Iwanski, J. S. and Bradley, E. (1998). Recurrence plots of experimental data: To embed or not to embed, Chaos, 8, 861-871. https://doi.org/10.1063/1.166372
- Jang, D. H. (2009). Recurrence plots as an exploratory graphical tool for evaluating randomness, The Korean Journal of Applied Statistics, 22, 1153-1165. https://doi.org/10.5351/KJAS.2009.22.6.1153
- Kim, B. M. and Kim, J. H. (2013). Time series models for daily exchange rare data. The Korean Journal of Applied Statistics, 26, 1-14. https://doi.org/10.5351/KJAS.2013.26.1.001
- Lee, S. and Noh, J. (2013). An empirical study on explosive volatility test with possibly nonstationary GARCH(1, 1) models, Communications of the Korean Statistical Society, 20, 207-215. https://doi.org/10.5351/CSAM.2013.20.3.207
- Marwan, N., Romano, M. C., Thiel, M. and Kurths, J. (2007). Recurrence plots for the analysis of complex systems, Physics Reports, 438, 237-329. https://doi.org/10.1016/j.physrep.2006.11.001
- Matassini, L., Kantz, H., Holyst, J. and Hegger, R. (2002). Optimizing of recurrence plots for noise reduction, Physical Review E, 65, 021102. https://doi.org/10.1103/PhysRevE.65.021102
- Mindlin, G. M. and Gilmore, R. (1992). Topological analysis and synthesis of chaotic time series, Physica D, 58, 229-242. https://doi.org/10.1016/0167-2789(92)90111-Y
- Oh, J. and Kim, S. (2013). Value-at-Risk estimation of the KOSPI returns by employing long-memory volatility models, The Korean Journal of Applied Statistics, 26, 163-185. https://doi.org/10.5351/KJAS.2013.26.1.163
- Park, K., Ko, K. and Beak, J. (2013). An one-factor VaR model for stock portfolio, The Korean Journal of Applied Statistics, 26, 471-481. https://doi.org/10.5351/KJAS.2013.26.3.471
- Thiel, M., Romano, M. C., Kurths, J., Meucci, R., Allaria, E. and Arecchi, F. T. (2002). Influence of observa-tional noise on the recurrence quantification analysis, Physica D, 171, 138-152. https://doi.org/10.1016/S0167-2789(02)00586-9
- Zbilut, J. P. and Webber Jr., C. L. (1992). Embeddings and delays as derived from quantification of recurrence plots, Physics Letters A, 171, 199-203. https://doi.org/10.1016/0375-9601(92)90426-M
- Zbilut, J. P., Zaldivar-Commenges, J. M., and Strozzi, F. (2002). Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data, Physics Letters A, 297, 173-181. https://doi.org/10.1016/S0375-9601(02)00436-X
Cited by
- Exploratory data analysis for Korean daily exchange rate data with recurrence plots vol.24, pp.6, 2013, https://doi.org/10.7465/jkdi.2013.24.6.1103