References
- Ait-Sahalia, Y. (1999). Transition densities for interest rate and other nonlinear diffusions, Journal of Finance, 54, 1361-1395. https://doi.org/10.1111/0022-1082.00149
- Ait-Sahalia, Y. (2002). Maximum-likelihood estimation of discretely-sampled diffusions: A closed-form approximation approach, Econometrica, 70, 223-262. https://doi.org/10.1111/1468-0262.00274
- Beskos, A., Papaspiliopoulos, O., Robert, G. O. and Fearnhead, P. (2006). Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes, The Journal of the Royal Statistical Society, Series B., 68, 333-383. https://doi.org/10.1111/j.1467-9868.2006.00552.x
- Chan, K. C., Karolyi, G. A., Longstaff, F. A. and Sanders, A. B. (1992). An empirical comparison of alternative models of the short-term interest rate, Journal of Finance, 47, 1209-1227. https://doi.org/10.1111/j.1540-6261.1992.tb04011.x
- Cox, J. (1975). Notes on option pricing I: Constant elasticity of variance diffusions. Working paper, Stanford University (reprinted in Journal of Portfolio Management, 1996, 22, 15-17).
- Cox, J., Ingersoll, J. and Ross, S. (1985). A theory of the term structure of interest rates, Econometrica, 53, 385-407. https://doi.org/10.2307/1911242
- Durham, G. and Gallant, R. (2001). Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes, Technical report.
- Elerian, O., Chib, S. and Shephard, N. (2001). Likelihood inference for discretely observed nonlinear diffusions, Econometrika, 69, 959-993. https://doi.org/10.1111/1468-0262.00226
- Eraker, B. (2001). MCMC analysis of diffusion models with application to finance, Journal of Business & Economic Statistics, 19, 177-191. https://doi.org/10.1198/073500101316970403
- Hansen, L. P. (1982). Large sample properties of generalized method of moment estimators, Econometrica, 50, 1029-1054. https://doi.org/10.2307/1912775
- Heyde, C. C. (1997). Quasi-Likelihood and Its Application: A General Approach to Optimal Parameter Estimation, Springer.
- Hurn, A., Jeisman, J. and Lindsay, K. (2007). Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations, Journal of Financial Econometrics, 5, 390-455. https://doi.org/10.1093/jjfinec/nbm009
- Imbens, G. W., Spady, R. H. and Johnson, P. (1998). Information theoretic approaches to inference in moment condition models, Econometrica, 66, 339-357.
- Kim, D.-G. and Lee, Y. D. (2011). Comparison study on the performances of NLL and GMM for estimating diffusion processes, The Korean Journal of Applied Statistics, 24, 1007-1020. https://doi.org/10.5351/KJAS.2011.24.6.1007
- Kloeden, P. and Platen, E. (1999). Numerical Solution of Stochastic Differential Equations, Springer.
- Lahiri, S. N. (1996). On inconsistency of estimators based on spatial data under infill asymptotics, Sankhya, Series A, 58, 403-417.
- Lahiri, S. N., Lee, Y. and Cressie, N. (2002). Efficiency of least squares estimators of spatial variogram parameters, Journal of Statistical Planning and Inference, 3, 65-85.
- Lee, Y. and Lahiri, S. N. (2002). Least squares variogram fitting by spatial subsampling, Journal of the Royal Statistical Society, Series B, 64, 837-854. https://doi.org/10.1111/1467-9868.00364
- Lee, Y.-D. and Lee, E.-K. (2013). An approximation of the cumulant generating functions of diffusion models and the Pseudo-likelihood estimation method, Journal of the Korean Operations Research and Management Science Society, 38, 201-216. https://doi.org/10.7737/JKORMS.2013.38.1.201
- Lee, Y., Song, S. and Lee, E. (2012). The Delta Expansion for the Transition Density of Diffusion Models, Technical Report.
- Oksendal, B. (2003). Stochastic Differential Equations: An Introduction with Applications, Springer.
- Pederson, A. R. (1995). A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations, Scandinavian Journal of Statistics, 22, 55-71.
- Shoji, I. and Ozaki, T. (1998). Estimation for nonlinear stochastic differential equations by a local linearization method, Stochastic Analysis and Applications, 16, 733-752. https://doi.org/10.1080/07362999808809559
- Vasicek, O. (1977). An equilibrium characterization of the term structure, Journal of Financial Economics, 5, 177-188. https://doi.org/10.1016/0304-405X(77)90016-2
Cited by
- Likelihood Approximation of Diffusion Models through Approximating Brownian Bridge vol.28, pp.5, 2015, https://doi.org/10.5351/KJAS.2015.28.5.895