초록
Tobin (1958)에 의해 처음 소개된 절단 회귀모형에서 베이지안 추정은 최대가능도 추정보다 실제값에 가까운 것으로 알려져 있으나 베이지안 방법론이 구간추정 문제에 있어서도 성공적으로 작동할 수 있을 지에 대해서는 알려진 바가 없다. 일반적으로 베이지안 방법론에서 사전분포는 분석자의 사전정보를 반영하기 때문에 주관적인 분석이 될 수 밖에 없는데, 이렇게 주관적인 분석에서는 빈도학파들이 요구하는 기준을 따르기 어렵다. 그러나 무정보사전분포는 때때로 빈도학파적 특성을 갖는 베이지안 추론을 가능하게 한다. 본 연구에서는 절단 회귀모형에서 무정보사전분포에 의한 베이지안 신뢰구간의 빈도학파적 특성을 살펴보고 최대가능도 추정 신뢰구간과 포함확률을 비교한다. 이를 통해 최대가능도 추정의 표준오차가 과소 추정되고 있음 밝힌다.
The Bayesian method can be applied successfully to the estimation of the censored regression model introduced by Tobin (1958). The Bayes estimates show improvements over the maximum likelihood estimate; however, the performance of the Bayesian interval estimation is questionable. In Bayesian paradigm, the prior distribution usually reflects personal beliefs about the parameters. Such subjective priors will typically yield interval estimators with poor frequentist properties; however, an objective noninformative often yields a Bayesian procedure with good frequentist properties. We examine the performance of frequentist properties of noninformative priors for the Tobit regression model.