References
- Arnold, B. (1983). Pareto Distributions, Fairland, MD: International Co-operative Publishing House.
- Arnold, B. C. and Press, S. J. (1983). Bayesian inference for Pareto populations, Journal of Econometrics, 21, 287-306. https://doi.org/10.1016/0304-4076(83)90047-7
- Arnold, B. C. and Press, S. J. (1989). Bayesian estimation and prediction for Pareto data, Journal of the American Statistical Association, 84, 1079-1084. https://doi.org/10.1080/01621459.1989.10478875
- Berger, J. O. (2006). The case for objective Bayesian analysis (with discussion), Bayesian Analysis, 1, 385-402. https://doi.org/10.1214/06-BA115
- Casella, G. and Berger, R. L. (2002). Statistical Inference, Duxbury Press.
- Crovella, M. E., Taqqu, M. S. and Bestavros, A. (1998). Heavy-Tailed Probability Distributions in the World Wide Web, A Practical Guide to Heavy Tails, Adler, R. J., Feldman, R. E., and Taqqu, M. S., Editors, Birkhauser, Boston, MA, 3-27.
- Cumming, S. G. (2001). A parametric model of the fire-size distribution, Canadian Journal of Forest Research, 31, 1297-1303. https://doi.org/10.1139/x01-032
- Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997). Modeling Extremal Events, Springer, New York.
- Fu, J., Xu, A. and Tang, Y. (2012). Objective Bayesian analysis of Pareto distribution under progressive Type-II censoring, Statistics and Probability Letters, 82, 1829-1836. https://doi.org/10.1016/j.spl.2012.06.007
- Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling, Applied Statistics, 41, 337-348. https://doi.org/10.2307/2347565
- Greenwood, J. A., Landwehr, J. M., Matalas, N. C. and Wallis, J. R. (1979). Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form, Water Re-sources Research, 15, 1049-1054. https://doi.org/10.1029/WR015i005p01049
- Harris, C. M., Brill, P. H. and Fischer, M. J. (2000). Internet-type queues with power-tailed interarrival times and computational methods for their analysis, INFORMS Journal on Computing, 12, 261-271. https://doi.org/10.1287/ijoc.12.4.261.11882
- Hosking, J. R. M. (1990). L-Moments: Analysis and estimation of distributions using linear combinations of order statistics, Journal of the Royal Statistical Society: Series B, 52, 105-124.
- Jackson, D. D. and Kagan, Y. Y. (1999). Testable earthquake forecasts for 1999, Seismological Research Letters, 70, 393-403. https://doi.org/10.1785/gssrl.70.4.393
- Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, 2nd ed., Wiley, NY.
- Lwin, T. (1972). Estimation of the tail of the Paretian law, Scandinavian Actuarial Journal, 55, 170-178.
- Pareto, V. (1897). Cours d'eEconomic Politique, F.Pichou, Paris.
- Pickands, III, J. (1975). Statistical inference using extreme order statistics, The Annals of Statistics, 3, 119-131. https://doi.org/10.1214/aos/1176343003
- Singh, V. P. and Guo, H. (1995). Parameter estimations for 2-parameter Pareto distribution by Pome, Water Resources Management, 9, 81-93. https://doi.org/10.1007/BF00872461
- Smith, R. L. (2003). Extreme Values in Finance, Telecom-Munications and the Environment, Finkenstadt, B. and Rootzen, H., Editors, Chapman and Hall/CRC Press, London.