DOI QR코드

DOI QR Code

Objective Bayesian Estimation of Two-Parameter Pareto Distribution

2-모수 파레토분포의 객관적 베이지안 추정

  • Received : 2013.07.15
  • Accepted : 2013.10.15
  • Published : 2013.10.31

Abstract

An objective Bayesian estimation procedure of the two-parameter Pareto distribution is presented under the reference prior and the noninformative prior. Bayesian estimators are obtained by Gibbs sampling. The steps to generate parameters in the Gibbs sampler are from the shape parameter of the gamma distribution and then the scale parameter by the adaptive rejection sampling algorism. A numerical study shows that the proposed objective Bayesian estimation outperforms other estimations in simulated bias and mean squared error.

본 연구에서는 2-모수 파레토분포에 대해 무정보사전분포인 준거사전분포의 가정 하에서 객관적 베이지안 모수추정 절차를 제안하였다. 베이지안 추정은 깁스샘플링에 의해서 수행된다. 깁스샘플러에서 모수생성하는 방법은 형태모수는 감마분포로부터 생성하고 척도모수는 적응기각표집 알고리즘에 의해 생성한다. 제안된 베이지안 모수추정 절차는 모의실험과 자료분석에서 기존의 추정방법들인 L-적률추정법, 최우추정법, 공액사전분포 하의 주관적 베이지안 모수추정법과 비교된다.

Keywords

References

  1. Arnold, B. (1983). Pareto Distributions, Fairland, MD: International Co-operative Publishing House.
  2. Arnold, B. C. and Press, S. J. (1983). Bayesian inference for Pareto populations, Journal of Econometrics, 21, 287-306. https://doi.org/10.1016/0304-4076(83)90047-7
  3. Arnold, B. C. and Press, S. J. (1989). Bayesian estimation and prediction for Pareto data, Journal of the American Statistical Association, 84, 1079-1084. https://doi.org/10.1080/01621459.1989.10478875
  4. Berger, J. O. (2006). The case for objective Bayesian analysis (with discussion), Bayesian Analysis, 1, 385-402. https://doi.org/10.1214/06-BA115
  5. Casella, G. and Berger, R. L. (2002). Statistical Inference, Duxbury Press.
  6. Crovella, M. E., Taqqu, M. S. and Bestavros, A. (1998). Heavy-Tailed Probability Distributions in the World Wide Web, A Practical Guide to Heavy Tails, Adler, R. J., Feldman, R. E., and Taqqu, M. S., Editors, Birkhauser, Boston, MA, 3-27.
  7. Cumming, S. G. (2001). A parametric model of the fire-size distribution, Canadian Journal of Forest Research, 31, 1297-1303. https://doi.org/10.1139/x01-032
  8. Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997). Modeling Extremal Events, Springer, New York.
  9. Fu, J., Xu, A. and Tang, Y. (2012). Objective Bayesian analysis of Pareto distribution under progressive Type-II censoring, Statistics and Probability Letters, 82, 1829-1836. https://doi.org/10.1016/j.spl.2012.06.007
  10. Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling, Applied Statistics, 41, 337-348. https://doi.org/10.2307/2347565
  11. Greenwood, J. A., Landwehr, J. M., Matalas, N. C. and Wallis, J. R. (1979). Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form, Water Re-sources Research, 15, 1049-1054. https://doi.org/10.1029/WR015i005p01049
  12. Harris, C. M., Brill, P. H. and Fischer, M. J. (2000). Internet-type queues with power-tailed interarrival times and computational methods for their analysis, INFORMS Journal on Computing, 12, 261-271. https://doi.org/10.1287/ijoc.12.4.261.11882
  13. Hosking, J. R. M. (1990). L-Moments: Analysis and estimation of distributions using linear combinations of order statistics, Journal of the Royal Statistical Society: Series B, 52, 105-124.
  14. Jackson, D. D. and Kagan, Y. Y. (1999). Testable earthquake forecasts for 1999, Seismological Research Letters, 70, 393-403. https://doi.org/10.1785/gssrl.70.4.393
  15. Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, 2nd ed., Wiley, NY.
  16. Lwin, T. (1972). Estimation of the tail of the Paretian law, Scandinavian Actuarial Journal, 55, 170-178.
  17. Pareto, V. (1897). Cours d'eEconomic Politique, F.Pichou, Paris.
  18. Pickands, III, J. (1975). Statistical inference using extreme order statistics, The Annals of Statistics, 3, 119-131. https://doi.org/10.1214/aos/1176343003
  19. Singh, V. P. and Guo, H. (1995). Parameter estimations for 2-parameter Pareto distribution by Pome, Water Resources Management, 9, 81-93. https://doi.org/10.1007/BF00872461
  20. Smith, R. L. (2003). Extreme Values in Finance, Telecom-Munications and the Environment, Finkenstadt, B. and Rootzen, H., Editors, Chapman and Hall/CRC Press, London.