References
- Abramowitz, M. and Stegun, I.A. (1964), Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series, Vol. 55.
- Archambault, M.H., Tremblay, R. and Filiatrault, A. (1995), Etude du Comportement Seismique des Contreventements Ductiles en X avec Profile's Tubulaires en Acier, Rapport No. EPM/GCS-1995-09, In: Montreal, Canada: Departement de Genie Civil, Ecole Polytechnique. [In French]
- Black, G.R., Wenger, B.A. and Popov, E.P. (1980), Inelastic Buckling of Steel Struts Under Cyclic Load Reversals, UCB/EERC-80/40, Earthquake Engineering Research Center, Berkeley, CA, USA.
- Calabrese, A., Almeida, J.P. and Pinho, R. (2010), "Numerical issues in distributed inelasticity modelling of RC frame elements for seismic analysis", J. Earthq. Eng., 14(1), 38-68. https://doi.org/10.1080/13632461003651869
- CEN (2005), "Eurocode 3: Design of steel structures-Part 1: General rules and rules for buildings, EN 1993-1 1", European Committee for Standardisation, Brussels, Belgium.
- CEN (2005), "Eurocode 8: Design of structures for earthquake resistance-Part 1: General rules, seismic actions and rules for buildings, EN 1998-1", European Committee for Standardisation, Brussels, Belgium.
- Charney, F.A. (2008), "Unintended consequences of modeling damping in structures", J. Struct. Eng. ASCE, 134(4), 581-592. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(581)
- Cho, C.H., Lee, C.H. and Kim, J.J. (2011), "Prediction of column axial forces in inverted V-braced seismic steel frames considering brace buckling", J. Struct. Eng. ASCE, 137(12), 1440-1450. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000377
- Coleman, J. and Spacone, E. (2001), "Localization issues in force-based frame elements", J. Struct. Eng. ASCE, 127(11), 1257-1265. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:11(1257)
- Correia, A.A. and Virtuoso, F.B.E. (2006), "Nonlinear analysis of space frames", Proceedings of the Third European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering, (Mota Soares et al. Eds.), Lisbon, Portugal.
- D'Aniello, M., Della Corte, G. and Mazzolani, F.M. (2006a), "Seismic upgrading of RC buildings by buckling restrained braces: Experimental results vs numerical modeling", Proceedings of the 5th International Conference on Behaviour of Steel Structures in Seismic Areas-Stessa 2006, Yokohama, August, 815-820.
- D'Aniello, M., Della Corte, G. and Mazzolani, F.M. (2006b), "Seismic upgrading of RC buildings by steel eccentric braces: Experimental results vs numerical modeling", Proceedings of the 5th International Conference on Behaviour of Steel Structures in Seismic Areas-Stessa 2006, Yokohama, August, 809-814.
- D'Aniello, M., Della Corte, G. and Mazzolani, F.M. (2008), "Experimental tests of a real building seismically retrofitted by special Buckling-Restrained Braces", AIP Conference Proceedings 1020 (PART 1), Reggio Calabria, July, 1513-1520.
- D'Aniello, M., Portioli, F. and Landolfo, R. (2010), "Modelling issues of steel braces under extreme cyclic actions", COST ACTION C26: Urban Habitat Constructions under Catastrophic Events-Proceedings of the Final Conference, Naples, September.
- Deierlein, G.G., Reinhorn, A.M. and Willford, M.R. (2010), Nonlinear Structural Analysis for Seismic Design: A Guide for Practicing Engineers, NIST GCR 10-917-5, National Institute of Standards and Technology, CA, USA.
- Della Corte, G., D'Aniello, M. and Landolfo, R. (2013), "Analytical and numerical study of plastic overstrength of shear links", J. Constr. Steel Res., 82, 19-32. https://doi.org/10.1016/j.jcsr.2012.11.013
- Dicleli, M. and Calik, E.E. (2008), "Physical theory hysteretic model for steel braces", J. Struct. Eng. ASCE, 134(7), 1215-1228. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1215)
- Dicleli, M. and Mehta, A. (2007), "Simulation of inelastic cyclic buckling behavior of steel box sections", Comput. Struct., 85(7-8), 446-457. https://doi.org/10.1016/j.compstruc.2006.09.010
- ECCS (1978), European Recommendations for Steel Construction, European Convention for Constructional Steelwork, (Sfintesco, D.), Brussels, Belgium.
- Fell, B.V., Kanvinde, A.M., Deierlein, G.G. and Myers, A.T. (2009), "Experimental investigation of inelastic cyclic buckling and fracture of steel braces", J. Struct. Eng. ASCE, 135(1), 19-32. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:1(19)
- Filippou, F.C. and Fenves, G.L. (2004), "Methods of analysis for earthquake-resistant", Chapter 6 from Engineering Seismology to Performance-Based Engineering, (Bozorgnia, Y. and Bertero, V.V. eds.), CRC Press, FL, USA.
- Filippou, F.C., Popov, E.P. and Bertero, V.V. (1983), Effects of Bond Deterioration on Hysteretic Behaviorof Reinforced Concrete Joints, EERC Report 83-19, Earthquake Engineering, Research Center, Berkeley,CA, USA
- Fragiadakis, M. and Papadrakakis, M. (2008), "Modeling, analysis and reliability of seismically excited structures: Computational issues", Int. J. Comput. Methods, 5(4), 483-511. https://doi.org/10.1142/S0219876208001674
- Georgescu, D. (1996), "Earthquake-recent developments in theoretical and experimental results on steel structures. Seismic resistant braced frames", Costruzioni metalliche, 1, 39-52.
- Goggins, J.M., Broderick, B.M., Elghazouli, A.Y. and Lucas, A.S. (2006), "Behavior of tubular steel members under cyclic axial loading", J. Constr. Steel Res., 621(2), 121-131.
- Goggins, J.M., Broderick, B.M. and Elghazouli, A.Y. (2008), "Earthquake testing and response analysis of concentrically-braced sub-frames", J. Constr. Steel Res., 64(9), 997-1007. https://doi.org/10.1016/j.jcsr.2007.12.014
- Goggins, J. and Salawdeh, S. (2012), "Validation of nonlinear time history analysis models for single-storey concentrically braced frames using full-scale shake table tests", Earthq. Eng. Struct. Dyn., DOI: 10.1002/eqe.2264. [In press]
- Ikeda, K. and Mahin, S.A. (1986), "Cyclic response of steel braces", J. Struct. Eng. ASCE, 112(2), 342-361. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:2(342)
- Jain, A.K. and Goel, S. (1978), Hysteresis Models for Steel Members Subjected to Cyclic Buckling or Cyclic End Moments and Buckling-Users Guide for DRAIN-2D, University of Michigan, College of Engineering, Ann Arbor, MI, USA
- Jin, J. and El-Tawil, S. (2003), "Inelastic cyclic model for steel braces", J. Eng. Mech. ASCE, 129(5), 548-557. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:5(548)
- Lee, S. and Goel, S.C. (1987), Seismic Behavior of Hollow and Concrete-Filled Square Tubular BracingMembers, Research Rep. No. UMCE 87-11, University of Michigan, Ann Arbor, MI, USA.
- Lee, P.S and Noh, C.H. (2010), "Inelastic buckling behavior of steel members under reversed cyclicloading", Eng. Struct., 32(9), 2579-2595. https://doi.org/10.1016/j.engstruct.2010.04.031
- Maquoi, R. and Rondal, J. (1978), "Mise en equation des nouvelles courbes europeennes de flambement",Construction Metallique, 1, 17-30. [In French]
- Mazzolani, F.M., Della Corte, G. and D'Aniello, M. (2009), "Experimental analysis of steel dissipativebracing systems for seismic upgrading", J. Civ. Eng. Manag., 15(1), 7-19. https://doi.org/10.3846/1392-3730.2009.15.7-19
- Menegotto, M. and Pinto, P.E. (1973), "Method of analysis for cyclically loaded reinforced concrete planeframes including changes in geometry and non-elastic behavior of elements under combined normal Forceand bending", Proceedings IABSE Symposium on Resistance and Ultimate Deformability of StructuresActed on by Well Defined Repeated Loads, Lisbon, Portugal.
- Nip, K.H., Gardner, L. and Elghazouli, A.Y. (2010), "Cyclic testing and numerical modelling of carbon steeland stainless steel tubular bracing members", Eng. Struct., 32(2), 424-441. https://doi.org/10.1016/j.engstruct.2009.10.005
- Priestley, M.J.N. and Grant, D.N. (2005), "Viscous damping in seismic design and analysis", J. Earthq. Eng.,9(1), 229-255. https://doi.org/10.1142/S1363246905002365
- Salawdeh, S. and Goggins, J. (2013), "Numerical simulation for steel brace members incorporating a fatiguemodel", Eng. Struct., 46, 332-349. https://doi.org/10.1016/j.engstruct.2012.07.036
- Scott, M.H. and Fenves, G.L. (2006), "Plastic hinge integration methods for force-based beam-column elements", J. Struct. Eng. ASCE, 132(2), 244-252. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(244)
- Seismosoft (2011), "SeismoStruct-A computer program for static and dynamic nonlinear analysis offramed structures", Available from URL: www.seismosoft.com
- Serra, M., Rebelo, C., Silva, L.S., Tenchini, A., D'Aniello, M. and Landolfo, R. (2012), "Study onconcentrically V-braced frames under cyclic loading", Proceedings of Stessa 2012 Conference, Santiago,Chile, January.
- Shaback, B. and Brown, T. (2003), "Behavior of square hollow structural steel braces with end connectionsunder reversed cyclic axial loading", Can. J. Civ. Eng., 30(4), 745-753. https://doi.org/10.1139/l03-028
- Shibata, M. (1982), "Analysis of elastic-plastic behavior of a steel brace subjected to repeated axial force",Int. J. Solids Struct., 18(3), 217-228. https://doi.org/10.1016/0020-7683(82)90004-X
- Spacone, E., Ciampi, V. and Filippou, F.C. (1996), "Mixed formulation of nonlinear beam finite element",Comput. Struct., 58(I), 71-83. https://doi.org/10.1016/0045-7949(95)00103-N
- Szabo, B.A. and Babuška, I. (1991), Finite Element Analysis, John Wiley & Sons.
- Takeuchi, T. and Matsui, R. (2011), "Cumulative cyclic deformation capacity of circular tubular braces under local buckling", J. Struct. Eng. ASCE, 137(11), 1311-1318. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000380
- Tang, X. and Goel, S.C. (1989), "Brace fractures and analysis of phase I structures", J. Struct. Eng. ASCE, 115(8), 1960-1976. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:8(1960)
- Tremblay, R. (2002), "Inelastic seismic response of steel bracing members", J. Constr. Steel Res., 58(5-8),665-701. https://doi.org/10.1016/S0143-974X(01)00104-3
- Tremblay, R., Archambault, M.H. and Filiatrault, A. (2003), "Seismic response of concentrically brace steel frames made with rectangular hollow bracing members", J. Struct. Eng. ASCE, 129(12), 1626-1636. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1626)
- Uang, C.M. and Bertero, V.V. (1986), Earthquake Simulation Tests and Associated Studies of a 0.3-ScaleModel of a Six-Story Concentrically Braced Steel Structure, University of California, Berkeley, CA, USA.
- Uriz, P. (2005), "Towards earthquake resistant design of concentrically braced steel buildings", Ph.D.Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley, CA,USA.
- Uriz, P., Filippou F.C. and Mahin, S.A. (2008), "Model for cyclic inelastic buckling of steel braces", J. Struct. Eng. ASCE, 134(4), 619-628. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(619)
- Wakawayashi, M., Matsui, C., Minami, K. and Mitani, I. (1970), Inelastic Behaviour of Full Scale SteelFrames, Kyoto University Research Information Repository, Disaster Prevention Research Instituteannuals.
- Wijesundara, K.K. (2009), "Design of concentrically braced steel frames with RHS shape braces", Ph.D.Dissertation, Pavia: European Centre for Training and Research in Earthquake Engineering (EUCENTRE).
- Wijesundara, K.K., Nascimbene, R. and Sullivan, T.J. (2011), "Equivalent viscous damping for steelconcentrically braced frame structures", B. Earthq. Eng., 9(5), 1535-1558. https://doi.org/10.1007/s10518-011-9272-4
- Yang, C.S., Leon, R.T. and DesRoches, R. (2008), "Pushover response of a braced frame with suspended zipper struts", J. Struct. Eng. ASCE, 134(10), 1619-1626. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:10(1619)
Cited by
- Theory of plastic mechanism control for MRF–CBF dual systems and its validation vol.12, pp.6, 2014, https://doi.org/10.1007/s10518-014-9612-2
- The influence of out-of-straightness imperfection in physical theory models of bracing members on seismic performance assessment of concentric braced structures vol.24, pp.3, 2015, https://doi.org/10.1002/tal.1160
- Seismic Behaviour of Different Bracing Systems in High Rise 2-D Steel Buildings vol.3, 2015, https://doi.org/10.1016/j.istruc.2015.06.004
- Comparative Response Assessment of Steel Frames With Different Bracing Systems Under Seismic Effect vol.11, 2017, https://doi.org/10.1016/j.istruc.2017.06.006
- Seismic analysis of steel structure with brace configuration using topology optimization vol.21, pp.3, 2016, https://doi.org/10.12989/scs.2016.21.3.501
- I.11.03: Influence of splitting beam and column stiffness on CBFS ductile behaviour vol.1, pp.2-3, 2017, https://doi.org/10.1002/cepa.393
- Seismic performance of dual-steel moment resisting frames vol.101, 2014, https://doi.org/10.1016/j.jcsr.2014.06.007
- Seismic Design of MRF-EBF Dual Systems with Vertical Links: EC8 vs Plastic Design vol.19, pp.3, 2015, https://doi.org/10.1080/13632469.2014.978917
- Seismic design and performance of multi-tiered steel braced frames including the contribution from gravity columns under in-plane seismic demand vol.101, 2016, https://doi.org/10.1016/j.advengsoft.2016.01.021
- Seismic response of Cfs strap-braced stud walls: Experimental investigation vol.85, 2014, https://doi.org/10.1016/j.tws.2014.09.008
- Intermediate HSS bracing members during seismic excitations: modeling, design, and behavior 2017, https://doi.org/10.1007/s11709-016-0375-5
- Seismic design criteria for Chevron CBFs: European vs North American codes (Part-1) vol.135, 2017, https://doi.org/10.1016/j.jcsr.2017.04.018
- Seismic performance assessment of Eurocode 8-compliant concentric braced frame buildings using FEMA P-58 vol.155, 2018, https://doi.org/10.1016/j.engstruct.2017.11.016
- Modeling of different bracing configurations in multi-storey concentrically braced frames using a fiber-beam based approach vol.101, 2014, https://doi.org/10.1016/j.jcsr.2014.06.009
- The influence of beam stiffness on seismic response of chevron concentric bracings vol.112, 2015, https://doi.org/10.1016/j.jcsr.2015.05.021
- Experimental tests on Crescent Shaped Braces hysteretic devices vol.144, 2017, https://doi.org/10.1016/j.engstruct.2017.04.034
- High strength steel in chevron concentrically braced frames designed according to Eurocode 8 vol.124, 2016, https://doi.org/10.1016/j.engstruct.2016.06.001
- Vibration control by damped braces of fire-damaged steel structures subjected to wind and seismic loads vol.83, 2016, https://doi.org/10.1016/j.soildyn.2016.01.003
- Buckling length determination of concrete filled steel tubular column under axial compression in standard fire test vol.49, pp.4, 2016, https://doi.org/10.1617/s11527-015-0570-1
- Determination of geometrical imperfection models in finite element analysis of structural steel hollow sections under cyclic axial loading vol.141, 2018, https://doi.org/10.1016/j.jcsr.2017.11.012
- Theory of Plastic Mechanism Control for MRF–EBF dual systems: Closed form solution vol.118, 2016, https://doi.org/10.1016/j.engstruct.2016.03.050
- 11.64: Seismic behaviour of steel Chevron bracing systems by non-linear dynamic analyses vol.1, pp.2-3, 2017, https://doi.org/10.1002/cepa.389
- Ground motions and scaling techniques for 3D performance based seismic assessment of an industrial steel structure 2018, https://doi.org/10.1007/s10518-017-0244-1
- Seismic behavior of concentrically braced frames designed to AISC341 and EC8 provisions vol.133, 2017, https://doi.org/10.1016/j.jcsr.2017.02.026
- Contribution of secondary frames to the mitigation of collapse in steel buildings subjected to extreme loads vol.12, pp.1, 2016, https://doi.org/10.1080/15732479.2014.994534
- Seismic Performance Assessment of Multitiered Steel Concentrically Braced Frames Designed in Accordance with the 2010 AISC Seismic Provisions vol.142, pp.12, 2016, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001561
- Cyclic Plastic Hinges with Degradation Effects for Frame Structures vol.143, pp.12, 2017, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001358
- Dynamic Response of Steel Framed Structures Fire-Retrofitted with Viscoelastic-Damped Braces vol.15, pp.8, 2017, https://doi.org/10.1007/s40999-016-0134-y
- Seismic response and failure mechanism of single-layer latticed domes with steel columns and braces as substructures vol.124, 2018, https://doi.org/10.1016/j.tws.2017.12.038
- Comparing fluid viscous damper placement methods considering total-building seismic performance vol.47, pp.14, 2018, https://doi.org/10.1002/eqe.3117
- Proposal of design rules for ductile X-CBFS in the framework of EUROCODE 8 pp.00988847, 2018, https://doi.org/10.1002/eqe.3128
- Seismic performance of modular steel frames equipped with shape memory alloy braces vol.16, pp.11, 2018, https://doi.org/10.1007/s10518-018-0394-9
- Improving total-building seismic performance using linear fluid viscous dampers vol.16, pp.9, 2018, https://doi.org/10.1007/s10518-018-0338-4
- Remarks on Seismic Design Rules of EC8 for Inverted-V CBFs vol.763, pp.1662-9795, 2018, https://doi.org/10.4028/www.scientific.net/KEM.763.1147
- Concentrically Braced Frames: European vs. North American Seismic Design Provisions vol.11, pp.1, 2013, https://doi.org/10.2174/1874149501711010453
- Assessment of the Design Criteria for Concentric V-Braced Steel Structures According to Italian and European Codes vol.11, pp.1, 2017, https://doi.org/10.2174/1874149501711010464
- Nonlinear Behaviour of Mid-rise Steel Buildings with Gate Braced Frames vol.11, pp.1, 2017, https://doi.org/10.2174/1874149501711010475
- Seismic Behavior of Concentrically Braced Steel Frames with Out-of-Plane Offset Irregularity vol.11, pp.1, 2013, https://doi.org/10.2174/1874149501711010485
- Dual-concentrically Braced Frames Using High Strength Steel - Seismic Response vol.11, pp.1, 2013, https://doi.org/10.2174/1874149501711010496
- A study on the comparison of a steel building with braced frames and with RC walls vol.12, pp.3, 2013, https://doi.org/10.12989/eas.2017.12.3.263
- Evaluation of seismic criteria of built-up special concentrically braced frames vol.29, pp.1, 2013, https://doi.org/10.12989/scs.2018.29.1.023
- ÇELİK ÇAPRAZ ELEMANLARIN ELASTİK ÖTESİ BURKULMA DAVRANIŞLARININ FARKLI MODELLEME YAKLAŞIMLARI İLE İNCELENMESİ vol.6, pp.1, 2018, https://doi.org/10.29130/dubited.362689
- Seismic performance-based design and risk analysis of thermal power plant building with consideration of vertical and mass irregularities vol.164, pp.None, 2018, https://doi.org/10.1016/j.engstruct.2018.03.001
- Cyclic performance and fracture of wide flanged concentrically steel braced frames vol.21, pp.3, 2020, https://doi.org/10.1080/13287982.2020.1786988
- Seismic design rules for ductile Eurocode-compliant two-storey X concentrically braced frames vol.36, pp.3, 2013, https://doi.org/10.12989/scs.2020.36.3.273
- An assessment of damper placement methods considering upfront damper cost vol.173, pp.11, 2013, https://doi.org/10.1680/jstbu.19.00023
- Development of curved braces partially strengthened by induction heating vol.233, pp.None, 2021, https://doi.org/10.1016/j.engstruct.2020.111754
- Seismic Design and Performance Assessment of Steel Frames Considering Joints' Behaviour vol.4, pp.2, 2013, https://doi.org/10.1002/cepa.1510