참고문헌
- Akbas, S.D. (2012), "Post-buckling behaviour of functionally graded beams under the influence of temperature", Ph.D. Thesis, Institute of Science at Yildiz Technical University, Istanbul.
- Akbas, S.D. and Kocaturk, T. (2011) "Eksenel Dogrultuda Fonksiyonel derecelendirilmis Timoshenko kirisinin sicaklik etkisi altindaki burkulma sonrasi davranisinin incelenmesi (Post-buckling behavior of axially functionally graded Timoshenko beam under the influence of temperature)", XVII. Turkish
- National Mechanic Congress, Elazig, Turkey. Akbas, S.D. and Kocaturk, T. (2011), "Post-buckling analysis of a simply supported beam under uniform thermal loading", Scientific Research and Essays, 6(4), 1135-1142.
- Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko Beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech., Int. J., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109
- Akbas, S.D., Kocaturk, T. and Simsek, M. (2012), "Thermal post-buckling analysis of 2-D beams made of functionally graded material", International Conference on Mechanics of Nano, Micro and Macro Composite Structures, Politecnico di Torino, Italy, June.
- Anandrao, K.S., Gupta, R.K., Ramchandran, P. and Rao, V. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng. Mech., Int. J., 36(5), 545-560. https://doi.org/10.12989/sem.2010.36.5.545
- ASME Code Cases: Nuclear Components (1992), Case N-47-30, Section III, Division 1., ASME Boiler and Pressure Vessel Code.
- Bhangale, R.K. and Ganesan, N. (2006), "Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core", J. Sound Vib., 295(1-2), 294-316. https://doi.org/10.1016/j.jsv.2006.01.026
- Detail of the ITER Outline Design Report (1994), The ITER Machine, Vol. 2, San Diego.
- Farid, M., Zahedinejad, P. and Malekzadeh, P. (2010), "Three-dimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method", Mater. Des., 31(1), 2-13. https://doi.org/10.1016/j.matdes.2009.07.025
- Felippa, C.A. (2013), "Notes on nonlinear finite element methods", Retrieved September. http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/NFEM.Ch10.d/NFEM.Ch10.pdf
- Hashizume, H. and Miya, K. (1987), "Thermomechanical behaviour of the first wall subjected to plasma disruption", Fusion Eng. Des., 5(2), 141-154. https://doi.org/10.1016/S0920-3796(87)90057-3
- Incropera, F. and DeWitt, D. (1985), Fundamentals of Heat and Mass Transfer, (2nd Edition), John Wiley.
- ITER Documentation Series, No. 29 (1991), Blanket, Shield Design and Material Data Base, IAEA, Vienna.
- Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Theoretical modeling and experimental validation of thermal response of metal-ceramic functionally graded beams", J. Therm. Stresses, 31(8), 759-787. https://doi.org/10.1080/01495730802194292
- Khdeir, A.A. (2001), "Thermal buckling of cross-ply laminated composite beams", Acta Mech., 149(1-4), 201-213. https://doi.org/10.1007/BF01261672
- Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6(3), 229-238. https://doi.org/10.1007/s10999-010-9132-4
- Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., Int. J., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347
- Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., Int. J., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775
- Li, S.-R., Zhang, J.-H. and Zhao, Y.-G. (2006), "Thermal Post-Buckling of Functionally Graded Material Timoshenko Beams", Appl. Math. Mech. (English Edition), 27(6), 803-810. https://doi.org/10.1007/s10483-006-0611-y
- Lim, C.W., Yang, Q. and Lu, C.F. (2009), "Two-dimensional elasticity solutions for temperature dependent in-plane vibration of FGM circular arches", Compos. Struct., 90(3), 323-329. https://doi.org/10.1016/j.compstruct.2009.03.014
- Lu, C., Chen, W. and Zhong, Z. (2006), "Two-dimensional thermoelasticity solution for functionally graded thick beams", Sci. China Series G: Phys., Mech. Astron., 49(4), 451-460. https://doi.org/10.1007/s11433-006-0451-2
- Mohammadia, M. and Drydena, J.R., (2008), "Thermal stress in a nonhomogeneous curved beam", J. Therm. Stresses, 31(7), 587-598. https://doi.org/10.1080/01495730801978471
- Na, K.-S. and Kim, J.-H. (2006), "Thermal postbuckling investigations of functionally graded plates using 3-D finite element method", Finite Elem. Anal. Des., 42(8-9), 749-756. https://doi.org/10.1016/j.finel.2005.11.005
- Nirmula, K., Upadhyay, P.C., Prucz, J. and Lyons, D. (2006), "Thermo-elastic stresses in composite beams with functionally graded layer", J. Reinf. Plast. Comp., 25(12), 1241-1254. https://doi.org/10.1177/0731684406059787
- Rahimi, G.H. and Davoodinik, A.R. (2008), "Thermal Behavior Analysis of the functionally graded Timoshenko's beam", Int. J. Eng. Sci., 19(5-1), 105-113.
- Rastgo, A., Shafie, H. and Allahverdizadeh, A. (2005), "Instability of curved beams made of functionally graded material under thermal loading", Int. J. Mech. Mater. Des., 2(1-2), 117-128. https://doi.org/10.1007/s10999-005-4446-3
- Sankar, B.V. and Tzeng, J.T. (2002), "Thermal stresses in functionally graded beams", AIAA J., 40(6), 1228-1232. https://doi.org/10.2514/2.1775
- Shinno, H., Kitajima, M. and Okada, M. (1988), "Thermal stress analysis of high heat flux materials", J. Nucl. Mater., 155-157(1), 290-294. https://doi.org/10.1016/0022-3115(88)90256-5
- Song, X. and Li, S. (2008), "Nonlinear stability of fixed-fixed FGM arches subjected to mechanical and thermal loads", Adv. Mater. Res., 33-37, 699-706. https://doi.org/10.4028/www.scientific.net/AMR.33-37.699
- Tietz, T.E. and Wilson, J.W. (1965), Behaviour and Properties of Refractory Metals, Arnold Publishing Co., London.
- Wakashima, K., Hirano, T. and Niino, M. (1990), Space applications of advanced structural materials, ESA, SP: 303-397.
- Zienkiewichz, O.C. and Taylor, R.L. (2000), The Finite Element Method, (5th Edition), 2, Solid Mechanics, Oxford, Butterworth-Heinemann.
피인용 문헌
- Post-Buckling Analysis of Axially Functionally Graded Three-Dimensional Beams vol.07, pp.03, 2015, https://doi.org/10.1142/S1758825115500477
- Buckling and Vibration Analysis of Functionally Graded Carbon Nanotube-Reinforced Beam Under Axial Load vol.08, pp.01, 2016, https://doi.org/10.1142/S1758825116500083
- Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness vol.19, pp.3, 2016, https://doi.org/10.1016/j.jestch.2016.05.014
- Forced Vibration Analysis of Functionally Graded Nanobeams vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117501009
- Stress Analysis of a Functionally Graded Micro/ Nanorotating Disk with Variable Thickness Based on the Strain Gradient Theory vol.08, pp.02, 2016, https://doi.org/10.1142/S1758825116500204
- On Post-Buckling Behavior of Edge Cracked Functionally Graded Beams Under Axial Loads vol.15, pp.04, 2015, https://doi.org/10.1142/S0219455414500655
- Buckling analysis of functionally graded material grid systems vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.877
- Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium vol.4, pp.3, 2016, https://doi.org/10.12989/anr.2016.4.3.229
- Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load vol.127, 2016, https://doi.org/10.1016/j.actaastro.2016.05.030
- A spectral element model for thermal effect on vibration and buckling of laminated beams based on trigonometric shear deformation theory vol.133, 2017, https://doi.org/10.1016/j.ijmecsci.2017.07.059
- Bending analysis of FGM plates using a sinusoidal shear deformation theory vol.23, pp.6, 2016, https://doi.org/10.12989/was.2016.23.6.543
- Modeling and analysis of functionally graded sandwich beams: A review pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1447178
- 悬索桥钢–混组合桥面系温度梯度数值模拟及效应研究 vol.25, pp.1, 2018, https://doi.org/10.1007/s11771-018-3728-5
- Post-buckling responses of functionally graded beams with porosities vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.579
- Nonlinear static analysis of functionally graded porous beams under thermal effect vol.6, pp.4, 2017, https://doi.org/10.12989/csm.2017.6.4.399
- Forced vibration analysis of cracked functionally graded microbeams vol.6, pp.1, 2013, https://doi.org/10.12989/anr.2018.6.1.039
- Geometrically nonlinear analysis of a laminated composite beam vol.66, pp.1, 2013, https://doi.org/10.12989/sem.2018.66.1.027
- Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2013, https://doi.org/10.12989/scs.2018.27.5.567
- Geometrically nonlinear analysis of functionally graded porous beams vol.27, pp.1, 2013, https://doi.org/10.12989/was.2018.27.1.059
- Thermal post-buckling analysis of a laminated composite beam vol.67, pp.4, 2018, https://doi.org/10.12989/sem.2018.67.4.337
- Thermo-Mechanical Post Buckling Analysis of Multiwall Carbon Nanotube-Reinforced Composite Laminated Beam under Elastic Foundation vol.6, pp.1, 2013, https://doi.org/10.1515/cls-2019-0018
- Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions vol.33, pp.1, 2019, https://doi.org/10.12989/scs.2019.33.1.133
- An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.061